
COGNITIVE SCIENCE 4, 135-183 (1960)

Physical Symbol Systems*

ALLEN NEWELL
Carnegie-Mellon University

On the occasion of 0 first conference on Cognitive Science, it seems appropriate
to review the basis of common understanding between the various disciplines. In
my estimate, the most fundamental contribution so far of artificial intelligence
and computer science to the joint enterprise of cognitive science has been the

notion of a physical symbol system, i.e., the concept of D broad class of systems
capable of having and manipulating symbois, yet realizable in the physical
universe. The notion of symbol so defined is internal to this concept, so it becomes

a hypothesis that this notion of symbols includes the symbols that we humans use
every day of our lives. In this paper we attempt systematically, but plainly, to lay
out the nature of physical symbol systems. Such IJ review is in ways familiar, but

not thereby useless. Restatement of fundamentals is an important exercise.

1. INTRODUCTION

The enterprise to understand the nature of mind and intelligence has been with us
for a long time. It belongs not to us alone, who are gathered at this conference,
nor even to science alone. It is one of the truly great mysteries and the weight of
scholarship devoted to it over the centuries seems on occasion so oppressively
large as to deny the possibility of fundamental progress, not to speak of solution.

Yet for almost a quarter century now, experimental psychology, linguis-
tics, and artificial intelligence have been engaged in a joint attack on this mystery

*This research was sponsored by the Defense Advanced Research Projects Agency (DOD),
ARPA Order No. 3597, Monitored by the Air Force Avionics Laboratory Under Contract F33615-

78-C-1551.
The views and conclusions contained in this document are those of the author and should not

be interpreted as representing the official policies, either expressed or implied, of the Defense

Advanced Research Projects Agency, or the U.S. Government.
Herb Simon would be a co-author of this paper, except that he is giving his own paper at this

conference. The key ideas are entirely joint, as the references indicate. In addition, I am grateful to
Greg Harris, John McDermott, Zenon F’ylysyhn. and Mike Rychener for detailed comments on an

earlier draft.
135

136 NEWELL

that is fueled by a common core of highly novel theoretical ideas, experimental
techniques, and methodological approaches. Though retaining our separate dis-
ciplinary identities. we have .strongly influenced each other throughout this
period. Others have been involved in this new attack, though not so centrally-
additional parts of computer science and psychology, and parts of philosophy,
neurophysiology , and anthropology.

Our communality continues to increase. In consequence, we are engaged in
an attempt to bind our joint enterprise even more tightly by a common umbrella
name, Cognitive Science, a new society, and a new series of conferences devoted
to the common theme-the outward and institutional signs of inward and concep-
tual progress. On such an occasion, attempts to increase our basis of mutual
understanding seem to be called for.

In my own estimation (Newell & Simon, 1976), the most fundamental
contribution so far of artificial intelligence and computer science to this joint
enterprise has been the notion of a physical symbol system. This concept of a
broad class of systems that is capable of having and manipulating symbols, yet is
also realizable within our physical universe, has emerged from our growing
experience and analysis of the computer and how to program it to perform
intellectual and perceptual tasks. The notion of symbol that it defines is internal
to this concept of a system. Thus, it is a hypothesis that these symbols are in fact
the same symbols that we humans have and use everyday of our lives. Stated
another way, the hypothesis is that humans are instances of physical symbol
systems, and, by virtue of this, mind enters into the physical universe.

In my own view this hypothesis sets the terms on which we search for a
scientific theory of mind. What we all seek are the further specifications of
physical symbol systems that constitute the human mind or that constitute sys-
tems of powerful and efficient intelligence. The physical symbol system is to our
enterprise what the theory of evolution is to all biology, the cell doctrine to
cellular biology, the notion of germs to the scientific concept of disease, the
notion of tectonic plates to structural geology.

The concept of a physical symbol system is familiar in some fashion to
everyone engaged in Cognitive Science-familiar, yet perhaps not fully ap-
preciated. For one thing, this concept has not followed the usual path of scientific
creation, where development occurs entirely within the scientific attempt to
understand a given phenomenon. It was not put forward at any point in time as a
new striking hypothesis about the mind, to be confiied or disconfiied.
Rather, it has evolved through a much more circuitous root. Its early history lies
within the formalization of logic, where the emphasis was precisely on separating
formal aspects from psychological aspects. Its mediate history lies within the
development of general purpose digital computers, being thereby embedded in
the instrumental, the industrial, the commercial and the artificial-hardly the
breeding ground for a theory to cover what is most sublime in human thought.

PHYSICAL SYMBOL SYSTEMS 137

The resulting ambivalence no doubt accounts in part for a widespread proclivity
to emphasize the role of the computer metaphor rather than a theory of informa-
tion processing.

The notion of symbol permeates thinking about mind, well beyond at-
tempts at scientific understanding. Philosophy, linguistics, literature, the arts-
all have independent and extensive concerns that focus on human symbols and
symbolic activity. Think only of Cassirier or Langer or Whitehead in philosophy.
Consider semantics, concerned directly with the relation between linguistic sym-
bols and what they denote, or Jung, in a part of psychology remote from ex-
perimentation and tight theory. These are vast realms of scholarship, by any
reckoning.

I cannot touch these realms today in any adequate way. Perhaps, I can let
one quote from Whitehead stand for them all:

After this preliminary explanation we must start with a definition of symbolism: The
human mind is functioning symbolically when some components of its experience
elicit consciousness, beliefs, emotions, and usages, respecting other components of its
experience. The former set of components are the “symbols”, and the later set
constitute the “meaning” of the symbols. The organic functioning whereby there is
transition from the symbol to the meaning will be called “symbolic reference”.
(1927, pp. 7-8)

This statement, from over ftity years ago, has much to recommend it. Let it
serve as a reminder that the understanding of symbols and symbolism is by no
means brand new. Yet the thread through computer science and artificial intelli-
gence has made a distinctive contribution to discovering the nature of human
symbols. Indeed, in my view the contribution has been decisive.

The notion of a physical symbol system has been emerging throughout the
quarter century of our joint enterprise-always important, always recognized,
but always slightly out of focus as the decisive scientific hypothesis that it has
now emerged to be.

For instance, recall the rhetoric of the fifties, where we insisted that com-
puters were symbol manipulation tnachines and not just number manipulation
machines. The mathematicians and engineers then responsible for computers
insisted that computers only processed numbers-that the great thing was that
instructions could be translated into numbers. On the contrary, we argued, the
great thing was that computers could take instructions and it was incidental,
though useful, that they dealt with numbers. It was the same fundamental point
about symbols, but our aim was to revise opinions about the computer, not about
the nature of mind.

Another instance is our ambivalence toward list processing languages.
Historically, these have been critically important in abstracting the concept of
symbol processing, and we have certainly recognized them as carriers of theoret-
ical notions. Yet we have also seen them as nothing but programming languages,

138 NEWELL

i.e., as nothing but tools. The reason why Al programming continues to be done
almost exclusively in list processing languages is sought in terms of ease of
programming, interactive style and what not. That Lisp is a close approximation
to a pure symbol system is often not accorded the weight it deserves.

Yet a third instance can be taken from our own work. When we laid out the
notion of physical symbol system in our book on human problem solving (Newell
& Simon, 1972), we did this as an act of preparation, not as the main point. We
focussed the theory on how people solved problems, given that they were symbol
manipulation systems. Even when, a little later, we chose to focus on the physi-
cal symbol system hypothesis per se (Newell & Simon, 1976), it was in the
context of receiving an award and thus we described it as a conceptual advance
that had already transpired.

A fourth and final instance is the way information processing systems are
presented in cognitive psychology. Even in the best informed presentations (e.g.,
Clark & Clark, 1977; Lindsay & Norman, 1977; Rumelhart, 1977) there is little
emphasis on symbolic functioning per se. When concern is expressed about the
adequacy of information processing notions for psychology (e.g., Neisser,
1976), the role of symbolic functioning is not addressed. There are some very
recent exceptions to this picture (Lachman, Lachman, & Butterfield, 1979). But
some of these (Allport, 1979; Palmer, 1978) seem to view such developments as
rather new, whereas I see them as having been the taproot of the success in
Artificial Intelligence right from the start almost twenty-five years ago.

In sum, it seems to me, a suitable topic for this conference is to attempt,
systematically but plainly, to lay out again the nature of physical symbol sys-
tems. All this will be in some ways familiar, but I hope far from useless.
Restatement of fundamentals is an important exercise. Indeed, I can take my text
from Richard Feynman. He is speaking of Fermi’s law of optics, but it applies
generally:

Now in the further development of science, we want more than just a formula. First we
have an observation, then we have numbers that we measure, then have a law which
summarizes all the numbers. But the real glory of science is that we can find a way of
thinking such that the law is evidenr. (1963, p. 26)

Physical symbol systems are becoming for us simply evident. But they are
our glory, and it is fitting that we should understand them with a piercing clarity.

And so, if you cannot stand what I say here as science, then take it as
celebration.

1.1 Constraints on Mind

Let me provide a general frame for the paper. The phenomena of mind have
arisen from a complex of aspects of the physical universe, localized strikingly
(though possibly not exclusively) in us humans. We scientists, trying to discern

PHYSICAL SYMBOL SYSTEMS 139

the physical nature of mind, can cast these aspects as a conjunction of constraints
on the nature of mind-like systems. Then our discovery problem is that of finding
a system structure that satisfies all these constraints. In trying to make that
discovery, we can use any tactics we wish. The constraints themselves are simply
desiderata and have no privileged status.

There is no magic list of constraints that we can feel sure about. Their
choice and formulation is as much a step in the discovery process as solving the
constraint satisfaction problem after positing them. However, it is easy to list
some candidate constraints that would find general acknowledgement. Figure 1
presents a baker’s dozen.

These constraints are far from precisely defined. Operationalizing the no-
tion of self-awareness poses difficult problems, however critical it seems as a
requirement. Even what constitutes the brain is open, moving over the last thirty
years from an essentially neural view to one that includes macromolecular
mechanisms as well. Not all the constraints are necessarily distinct. Conceivably,
human symbolic behavior and linguistic behavior could be the same, as could
development and learning. Not all constraints are necessarily independent. To be
a neural system implies being a physical system, though there can be reasons to
consider the more general constraint separately. Some of the constraints are
familiar back to Aristotle, others are recent additions. Who would have thought
to add the concern with robustness under error if computers and their programs
had not exhibited the sort of brittle, ungraceful degradation that we have all come
to know so well.

What seems clear is that, when we finally come to know the nature of mind
in humans, it will be seen to satisfy all of these constraints (and others that I have
neglected to list). And when we finally come to know the nature of intelligence
generally, it will be seen how its variety arises from a release from some of these
constraints.

Our difficulty, as scientists, is that we cannot solve for systems that satisfy

1. Behave as an (almost) arbitrary function of the environment (universality).

2. Operate in real time.

3. Exhibit rational, i.e., effective adaptive behavior.

4. Use vast amounts of knowledge about the erwironment.

5. 8&w robustly in the face of error, the unexpected, and the unknown.

6. Use symbols (and abstractions).

7. Use (natural) language.

8. Exhibit selfsvmreness and a sense of self.

9. learn from its environment.

10. Acquire its capabilities through development.

1 1. Arise through evolution.

12. Be realizable within the brain as a physical system.

13. Be realizable as a physical system.

Figure 1. Constraints on Mind.

140 NEWELL

such simultaneous constraints. Indeed, we cannot usually do better than to gener-
ate on one constraint and test on the others. Thus, particular constraints are taken
by various groups of scientists as the frame within which to search for the nature
of mind. One thinks of Ashby (1956) and his formulation in terms of general
differential equation systems, which is to say, basically physically realizable
systems. Or the endeavor of those working in the fifties on self-organizing
systems to work within neuron-like systems (Yovits & Cameron, 1960; Yovits,
Jacobi, & Goldstein, 1962). Or the emergence of a sociobiology that works
primarily from evolutionary arguments (Wilson, 1975). And, of course, both the
neurophysiologists and the linguists essentially work from within their respective
disciplines, which correspond to constraints in our list. Artificial intelligence
works from within the digital computer-sometimes, it seems, even from within
Lisp. However, the computer is not one of these constraints, though strongly
associated with the first item, and my purpose is not to identify particular con-
straints with particular disciplines. The constraints are conceptual aspects of the
nature of the human mind, and they must all be taken into account in the final
analysis, whatever the starting point.

Which constraint forms a preferred basis from which to conduct the search
for the nature of mind? Most important, a constraint must provide a constructive
definition of a class of systems. Otherwise, search within it cannot occur, be-
cause it will not be possible to generate candidates whose properties can then be
explored. Several of the constraints have real difficulty here-development and
learning, robustness, real-time operation. For instance, we simply have no
characterization of all systems that show development; all we can do is pose a
system described within some other class and ask about its developmental charac-
teristics. The constraint of development must remain primarily a test, not a
generator. On the other hand some constraints, such as using language, do very
well. The formalisms for grammars provide potent generative bases.

The strength of a constraint, or its distinctiveness with respect to mind, also
weighs in the balance, however difficult the assessment of such a characteristic.
For example, one real problem with the evolution constraint is that we know it
gives rise to an immense diversity of systems (organisms). It is not clear how to
get it to generate systems that are shaped at all to mind-like behavior. Again,
linguistics has fared much better in this regard. For linguistics has appeared, until
recently, to be distinctively and uniquely human. As a last example, one major
argument against the universal machines of logic and computer science has
always been that universality had been purchased at the price of total ineffi-
ciency, and a class which relied on such an aspect seemed irrelevant to real
systems.

But such considerations are only preferences. Our joint scientific enterprise
demands that substantial groups of scientists focus on all these constraints and
their various combinations. It demands that new constraints be discovered and

PHYSICAL SYMBOL SYSTEMS 141

added to the list, to provide new ways from which to seek the true nature of
mind.

My focus on physical symbol systems in this paper certainly amounts to an
argument for taking one particular class of systems as the base-as the
generator-for the search for mind. This class appears to satisfy jointly at least
two of the constraints in the list-universality and symbolic behavior-and to
give good evidence of being able to be shaped to satisfy other constraints as well,
while still remaining usefully generative. But, as the discussion should make
clear, this is just an argument over scientific tactics-over the right way to go
about untying the great puzzle knot that is the mind. On the matter of scientific
substance, we need to understand all we can about all the aspects represented in
these constraints.

1.2. Plan

Let me preview what I intend to do, so as to be as plain and straightforward as
possible.

To present the notion of a physical symbol system, I introduce a specific
example system. This permits a concrete discussion of the key property of
universality, the first constraint on our list. With this concept in hand, I gener-
alize the example system to the class of all physical symbol systems. This makes
it evident that systems that satisfy the constraint of universality also are capable
of a form of symbolic behavior. The Physical Symbol System Hypothesis states
in essence that this form of symbolic behavior is all there is; in particular, that it
includes human symbolic behavior. I turn briefly to the question of system
levels, which allows the placement of the symbol level within the larger frame of
physical systems. With all these elements on the table, I then discuss some issues
that are important to understanding the notion of physical symbol system and the
hypothesis, and their roles in cognitive science.

So far I have been careful always to refer to a physical symbol system, in
order to emphasize two facts. First, such a system is realizable in our physical
universe. Second, its notion of symbol is a priori distinct from the notion of
symbol that has arisen in describing directly human linguistic, artistic and social
activities. Having been clear about both of these, we can drop the adjective,
except when required to emphasize these two points. ’

As already stated, the fundamental notion of a physical symbol system
presented here is not novel scientifically. Even the formulation presented does
not differ in any important way from some earlier attempts (Newell & Simon,
1972; Newell & Simon, 1976). I am engaged in restatement and explication. The
details and the tactics of the formulation are new and I hope thereby to make
matters exceptionally clear and to highlight some important features of such
systems. Still, it does not follow that the notion of physical symbol system and

142 NEWELL

the particular hypothesis about it are accepted by all, or accepted in exactly the
form that is given here.

2. SS: A PARADIGMATIC SYMBOL SYSTEM

Figure 2 lays out our example symbol system schematically. We will call it SS
(Symbol System) for short. It is a machine which exists in an environment
consisting of objects, distributed in a space of locations. We can imagine the
objects having some sort of structure and dynamics, and doing their individual
and interactive thing in this space.

SS consists of a memory, a set of operators, a control, an input, and an
output. Its inputs are the objects in certain locations; its outputs are the modifica-
tion or creation of the objects in certain (usually different) locations. Its external
behavior, then, consists of the outputs it produces as a function of its inputs. The
larger system of environment plus SS forms a closed system, since the output
objects either become or affect later input objects. SS’s internal state consists of
the state of its memory and the state of the control; and its internal behavior
consists of the variation in this internal state over time.

The memory is composed of a set of symbol structures, {El, Ez, . . Em},
which vary in number and content over time. The term expression is used
interchangeably with symbol structure. To define the symbol structures there is
given a set of abstract symbols, {S 1, S2, . . . Sn} . Each symbol structure is of a
given type and has some number of distinguished roles, { Ri , R2, .} Each
role contains a symbol, so if we take the type as understood implicitly and the
roles as the successive positions on the paper, we could write an expression as:

(Sl s2, . . . Sn)

If we wanted to show the roles and the type explicitly we could write:

(Type: T RI:SI R2:Sz, . . . Rn:Sn)

The roles (and their number) are determined by the type, of which there can be a
large variety. The same symbol, e.g., Sk, can occupy more than one role in a
structure and can occur in more than one structure. By the content of an expres-
sion is meant simply the symbols associated with the roles of the expression.

SS has ten operators, each shown as a separate box in the figure. Each
operator is a machine that takes one or more symbols as input and produces as
output some symbol (plus possibly other effects) as a result. The behavior that
occurs when an operator and its inputs combine is called an operation. The
details of the behavior of the system come from these operations, which we will
go over in a moment.

PHYSICAL SYMBOL SYSTEMS

SS: EXAMPLE SYMBOL SYSTEM

143

MEMORY

(9, S2, Sn)

Figure 2. Struchre of SS, a Paradigmatic Symbol System.

The behavior of the system is governed by the control. This is also a
machine; its inputs include the operators: It has access to their inputs and outputs
and can evoke them. It also has as an input the symbol for a single expression,
which is called the active expression. The behavior of the control consists of the
continual interpretation of whatever expression is active. If this specifies an
operation to be performed, then the control will bring the input symbols to the
input locations of the indicated operator and then evoke the operator to produce
the result, i.e., it will effect the combining of data and operators. The control
also determines which expression shall become active next, so that the behavior
of the total system runs on indefinitely. We will describe the control in detail
after discussing the operators.

144 NEWELL

Assign symbol 51 to the some entity os symbol Sz

Produces SI with new assignment

Copy expression E (create new symbol)

Produces newly created expression and symbol

Write SI at role RI,. in expression E

Prodwes the modified expression

nil is the some OS doesn’t exist

Rood symbol at role R of E

Produces the expression or nil

Do sequence SI Sz 53 . .

Produces the expression produced by lost SI.

Exit sequence if the prior result is E
Produces prior expression

Continue sequence if the prior result is E

Produces prior expression

Quote the symbol S

Produces S without interpretation

Behave externally according to expression E

Produces feedback expression

Input according to expression E

Produces new expression or nil

(assign SI S2)

(COPY E)

(write E RISI .)

(read R E)

(do SI 52 .)

(exit-if E)

(continue-if E)

(quote 5)

(behave E)

(input E)

Figure 3. Operators of SS.

Figure 3 lists the operations of SS. There exists a type of symbol structure,
which we will call a program, which has roles corresponding to an operator and
the inputs appropriate to that operator. These program expressions are shown in
the figure at the right.

Assign a symbol. This establishes a basic relationship between a symbol and the entity
to which it is assigned, which we call ucccss. While it lasts (i.e., until the assign-
ment is changed) any machine (i.e., the ten operators and the control) that has
access to an occurrence of this symbol in an expression has access to the assigned
entity. If a machine has access to an expression, then it can obtain the symbols in
the various roles of the expression and it can change the symbols in these roles.
Symbols can be assigned to entities other than expressions, namely, to operators
and roles. Access to an operator implies access to its inputs, outputs, and evocation
mechanism. Access to a role of a given type implies access to the symbol at that
role for any expression of the given type and access to write a new symbol at that
role.

Copy expression. This adds expressions and symbols to the system. The new expres-
sion is an exact replica of the input expression, i.e., the same type and the same
symbols in each role. A new symbol is created along with the new expression (a
necessity for gaining access to the expression).

PHYSICAL SYMBOL SYSTEMS 145

Write an expression. This creates expressions of any specified content. It does not
create a new expression (copy does that), but modifies its input expression. What to
write is specified by giving the roles and the new symbols that are to occupy these
roles. Write permits several symbols to be written with a single operation; it could
as well have permitted only one. For example, given a type with roles RI, Rz, etc.,
in order, and given an expression (X Y Z), [write (X Y Z) RI A Rs C] produces a
modified expression (A Y C).

Write establishes a symbol at a given role whether or not there was a symbol at that role
before, and independent of what symbols exist at other roles. Writing nil at a role
effectively deletes it.

Read the symbol at a specific role. This obtains the symbols that comprise an expres-
sion, given that the expression has been obtained. It is possible that no symbol
exists for a given role; in this case read produces the symbol nil. (Thus it can be
seen why writing nil at a role effectively deletes it.)

Do sequence. This makes the system do arbitrary actions, by specifying that it do one
thing after another. There are an unlimited number of input roles, one for each
element in the sequence. The last expression produced during such a sequence is
taken to be the result of the sequence. All the expressions produced by earlier items
in the sequence are ignored. Of course, actions may have taken place along the way
(often referred to as side effects), e.g., assignment of symbols.

Exit-if and Continue-if. The system behaves conditionally by continuing or exiting
(terminating) the execution of a sequence. A conditional operator tests if the ex-
pression produced at the immediately preceding step of the sequence is the same as
its input expression. It then takes a specific control action. For example, [do . . A
(exit-if A) .] would exit, i.e., would not complete the rest of the sequence. If
symbols A and B designate different expressions, then [do . B (continue-if
A) .] would also exit. The output of the operator is the expression tested, which
then becomes the output of the sequence if there is termination.

Quote a symbol. The control automatically interprets every expression that becomes
active. This operator permits it to not interpret a given expression, but to treat its
symbol as the final result.

Behave externally. There exists some collection of external behaviors controllable by
SS. Symbol structures of some type exist that instruct the organs that produce this
external behavior. It will be enough to have an operator that evokes these ex-
pressions. Execution of the operator will produce some expression that provides
feedback about the successful accomplishment (or failure) of the external opera-
tion.

Input from environment. Inputs from the external environment enter the system by
means of newly created expressions that come to reside in the memory. These
inputs occur when the input operator is evoked; there may be different channels
and styles of input, so that input takes an expression as input to specify this. The
input expressions are processed when input is evoked, since the resulting expres-
sion is interpreted by the control, though presumably the new expressions are not of
type program, but some type related to describing the external environment.

146 NEWELL

Interpret the active expression:

If it is not a program:
Then the result is the expression itself.

If it is a program:
Interpret the symbol of aoch role for that role;
Then exeprte the operator on its inputs;
Then the result of the operation is the result.

Interpret the result:

If it is 0 new expression:
Then interpret it for the some role.

If it is not a new expression:
Then use OS symbol for role.

Figure 4. Operation of SS’s Control.

The operation of the control is shown in Figure 4. The control continuously
interprets the active expression. The result of each interpretation is ultimately a
symbol, though other actions (i .e . , side effects) may have occurred during the act
of interpretation, which are also properly part of the interpretation.

Control interprets the active expression by first determining whether it is a
program symbol structure. Thus the control can sense a structure’s type. If it is
not a program, then the result of the interpretation is just the symbol itself (i.e.,
the symbol is treated as data).

If the active expression is a program, then the control proceeds to execute
the operation specified by the program. However, the actual symbols in the
program at the roles for the operator and its inputs must themselves be inter-
preted. For these symbols might not be the operator and inputs, respectively, but
programs whose interpretations are these symbols. Thus, the control interprets
each symbol in the program until it finally obtains the actual symbols to be used
for the operator and the inputs. Then, it can actually get the operation performed
by sending the input symbols to the appropriate operator, evoking it, and getting
back the result that the operator produces.

Control then interprets the result (as arrived at through either of the routes
above). If it is a new expression, then it proceeds to interpret it. If it is not new,
then it finally has obtained the symbol.

The control has the necessary internal machinery to interpret each operator
or input symbol in a program until it obtains the symbol finally to be used for
each role in the program. This will be the one that is finally not a program type of
stmcture. The control remembers the pending interpretations and the results
produced so far that are still waiting to be used. The normal way to realize all this
in current technology is with a pushdown stack of contexts; but all that is
specified here is end result of interpretation, not how it is to be accomplished.

We now have an essentially complete description of one particular symbol

PHYSICAL SYMBOL SYSTEMS 147

system. To generate a concrete (and particular) behavioral trajectory, it is only
necessary to provide an initial condition, consisting of the set of initial ex-
pressions in the memory and the initial active expression. The system behaves in
interaction with the environment, but this is accounted for entirely by the opera-
tion of the input and behave operators. The operation of these two operators
depends on the total environment in which the system is embedded. They would
normally be given by definite mechanisms in the external structure of the system
and the environment, along with a set of laws of behavior for the environment
that would close the loop between output and input. From a formal viewpoint the
operation of these two operators can just be taken as given, providing in effect a
boundary condition for the internal behavior of the system.

This type of a machine is certainly familiar to almost everyone in Cognitive
Science, at least in outline. The virtue of SS over others that might be even more
familiar is that it is designed to aid understanding the essential features of sym-
bols and symbolic behavior. There are no irrelevant details of SS’s structure.
Each operator (and also the control) embodies a generalized function that is
important to understanding symbolic systems.

The expository virtues of SS aside, it remains a garden variety, Lisp-ish
sort of beast.

3. UNIVERSALITY

That our example symbol system is garden variety does not keep it from being a
variety of a very remarkable genus. Symbol systems form a class-it is a class
that is characterized by the property of universality. We must understand this
remarkable property before we can generalize appropriately from our paradigma-
tic symbol system to a characterization of the entire class.

Central to universality is flexibility of behavior. However, it is not enough
just to produce any output behavior; the behavior must be responsive to the
inputs. Thus, a universal machine is one that can produce an arbitrary input-
output function; that is, that can produce any dependence of output on input.

Such a property is desirable for an adaptive, intelligent system which must
cope with environments whose demands are not known at the time the system is
designed. Indeed, this property heads the constraints in Figure 1. Being able to
produce any behavior in response to a situation is neither absolutely necessary
nor hardly sufficient for success. But the more flexibility the better; and if
behavior is too unresponsive, the system will fail against its environment. Al-
most all purposive behavior shows intricate dependence on the environment, i.e.,
shows the flexible construction of novel input-output functions-an animal cir-

cling its prey, a person in conversation with another, a player choosing a chess
move, a student solving a physics exercise, a shopper bargaining with a seller,
and on and on. This was the classic insight of Cybernetics-systems appeared

148 NEWELL

purposive when their behavior was dependent on the environment so as to attain
(or maintain) a relationship; and feedback was necessary to obtain this depen-
dence with a changing environment. The formulation here separates the ability to
produce the dependence (universality) from the way such a ability can be used to
produce purposiveness, the latter residing in the rationality constraint in Figure 1.

The property of universality cannot be quite so simply defined. Four dif-
ficulties, in particular, must be dealt with.

The fist difficulty is the most obvious. Any machine is a prisoner of its
input and output domains. SS, our example system, presents an abstract
machine-centered view, so that the external world is pretty much what is seen by
the machine. But this is deceptive. Machines live in the real world and have only
a limited contact with it. Any machine, no matter how universal, that has no ears
(so to speak) will not hear; that has no wings, will not fly. Thus universality will
be relative to the input and output channels. Such a consideration is alleviated in
theoretical discussions by the simple expedient of considering only abstract in-
puts and outputs. It can be alleviated in the real world by providing transducers
that encode from one input-output channel to another. Thus, being able to
produce any function between two given domains permits inducing any function
between two other domains if the domains are hooked up appropriately.’ But this
interface limit must always be remembered.

The second difficulty is also obvious. In the physical world there are
limits-limits to the speed of components, to spatial and energy sensitivity, to
material available for memory, to reliability of operation, to name just. the more
obvious. To state a tautology: No system can behave beyond its physical limits.
Thus, the universality of any system must be taken relative to such physical
implementation limits.

The third difficulty is more serious. A machine is defined to be a system
that has a specific determined behavior as a function of its input. By definition,
therefore, it is not possible for a single machine to obtain even TWO different
behaviors, much less any behavior. The solution adopted is to decompose the
input into two parts (or aspects): one part (the insfruction) being taken to deter-
mine which input-output function is to be exhibited by the second part (the
input-proper) along with the output. This decomposition can be done in any
fashion-for instance, by a separate input channel or by time (input prior to a
starting signal being instruction, afterward being input-proper). This seems like
an innocent arrangement, especially since the input-proper may still be as open as
desired (e.g., all future behavior). However, it constitutes a genuine limitation
on the structure of the system. For instance, the instruction must have enough
capacity to specify all of the alternative functions. (If the instruction to a machine
consists only of the setting of a single binary toggle switch, then the machine

‘The internal domains must have enough elements to permit discrimination of the elements of
the external domains, a condition which Ashby (1956) called the Law of requisire variety.

PHYSICAL SYMBOL SYSTEMS 149

cannot exhibit three different input-output behaviors.) Most important, the basic
decomposition into two parts has far-reaching consequences-it guarantees the
existence of symbols.

The fourth difficulty is the most serious of all. There appears to be no way
that a universal machine can behave literally according to any input-output
function, if the time over which the behavior is to occur is indefinitely extended
(e.g., the entire future after some period of instruction). This is the import of the
discovery of noncomputable functions, which is an important chapter in the
theory of computing machines (Brainerd & Landweber, 1974; Minsky, 1967).
The difficulty is fundamentally that there are too many functions-too many
ways to have to instruct a machine to behave.

This can be appreciated directly by noting that each instruction to the
machine, no matter how complex, is simply a way of naming a behavior. Thus, a
machine cannot produce more distinct behaviors than it can have distinct instruc-
tions. Let the number of possible instructions be K. The number of behaviors is
the number of input-output functions, so if there are M possible inputs and N
possible outputs, then the number of behaviors is NM (i.e., the assignment of one
of the N possible outputs for each of the M inputs). Thus, K instructions must
label NM behaviors. If K, M, and N are all in the same range, then NM is going to
be very much bigger than K. Now, as time is permitted to extend indefinitely into
the future, all three possibilities (K, M, and N) will grow to become countably
infinite. But, although K (the number of instructions) grows to be countably
infinite, NM (the number of functions to be labeled) grows much faster to become
uncountably infinite. In sum, there simply are not enough possible instructions to
cover all the functions that must be named.

If all possible functions cannot be attained, then some way must be found
to describe which can and which cannot. Therein lies a further difficulty. Sup-
pose a descriptive scheme of some sort is used, in order to say that a given
machine can realize functions of certain descriptions and not functions of other
descriptions. What do we know then about the functions that are not describable
by the given scheme? We have confounded the properties of the descriptive
scheme with the properties of the machine. Indeed, the suspicion might arise that
a connection exists between descriptive schemes and machines, so that this
difficulty is part and parcel of the main problem itself.

The solution has been to take the notion of a machine itself as the keystone.
Direct description of behavior is abandoned, and in its place is put the behavior
producted by such and such a machine. For any class of machines, defined by
some way of describing its operational structure, a machine of that class is
defined to be universal if it can behave like any machine of the class. This puts
simulation at the center of the stage; for to show a given input-output behavior is
to simulate a machine that shows that input-output behavior. The instructional
input to the machine must now be some means of describing any arbitrary
machine of the given class. The machine whose universality is being demon-

150 NEWELL

strated must take that input and behave identically to the machine described by its
input, i.e., it must simulate the given machine.

The notion of universality thus arrived at is relative, referring only to the
given class of machines. Universal machines could exist for classes of machines,
all right, but the input-output functions encompassed by the whole class could
still be very limited. Such a universal machine would be a big frog in a small
pond of functions.

The next step is to attempt to formulate very large classes of machines, by
means of general notions of mechanism, in order to encompass as wide a range of
input-output functions as possible. (The input and output domains are always
taken to be intertranslatable, so the relevant issue is the functional dependence of
output on input, not the character of the inputs and outputs taken separately.)
Another important chapter in the theory of computing (Brainerd & Landweber,
1974; Minsky, 1967) has shown that all attempts to do this lead to classes of
machines that are equivalent in that they encompass in toto exactly the same set
of input-output functions. In effect, there is a single large frog pond of functions
no matter what species of frogs (types of machines) is used. But the frog pond is
just a pond; it is not the whole ocean of all possible functions.

That there exists a most general formulation of machine and that it leads to
a unique set of input-output functions has come to be called Church’s thesis after
Alonzo Church, the logician who fist put forth this claim with respect to one
specific formulation (recursive functions) (Church, 1936). Church’s statement is
called a thesis because it is not susceptible fo formal proof, only to the accumula-
tion of evidence. For the claim is about ways to formalize something about the
real world, i.e., the notion of machine or determinate physical mechanism.
Self-evidently, formal proof applies only after formalization. The most striking
evidence has been the existence of different maximal classes of machines, de-
rived from quite different formulations of the notion of machine or procedure,
each of which turns out to be capable of producing exactly this same maximal set
of functions.

A large zoo of different formulations of maximal classes of machines is
known by now-Turning machines, recursive functions, Post canonical systems,
Markov algorithms, all varieties of general purpose digital computers, most
programming languages (viewed as specifications for a machine). As a single
neutral name, these classes are interchangebly called the effectively cotnputuble
procedures and the functions that can be attained by the machines are called the
cotnputable functions.

These maximal classes contain universal machines, i.e., machines that, if
properly instructed through part of their input, can behave like any other machine
in the maximal class. But then they can produce all the input-output functions
that can be produced by any machine, however defined (i.e., in any other
maximal class). It is these machines that are usually referred to as universal
machines. From now on this is what we shall mean by universal. The proofs of

PHYSICAL SYMBOL SYSTEMS 151

the existence of these universal machines are also part of this early great chapter
in the theory of logic and computers.

SS, our paradigmatic symbol system, is universal. Thus, it has as much
flexibility as it is possible to obtain. It is useful to show that SS is universal. It is
easy to do and its demonstration will make the notion transparent and keep it
from accruing any mystery. Having the demonstration will also provide us with
an example of a program in SS, which will clarify any confusing points in its
definition. We will also be able to use this demonstration to support several
points about general symbol systems when we examine them in the next section.

To show that SS is universal, all we need to show is that it can simulate any
member of a class of machines already known to be a maximal class. Let us
choose the class of Turing machines: It is simple, classical, and everyone knows
that it is a formulation of a maximal class.

\l lololrlo

Q 1 and 0: ~0 Left 03s
0 land 1: ~1 Left Q7>
Q2and 0: ~1 Right PI >
Q2and 1: ~0 Left 98~
Q3and 0: <l Left Q9>
P3and I: CO Right Q2>

. . .

T3: [content:0 left:T2 right:T4]

~2: [if-O: [content:1 m-right next:QI]

if-l: [content:0 move:left “ext:QB]]

TM: [do

[do [read content T] [continue-if O] [assign A [read if-0 S]

[do [read content T] [continue-if l] [assign A [read if-l S]

[write T content [read content A]]

[assign T [read [read move A] T]]

[assign S [read nut A]]

TM1
Figure 5. Simulation of Arbitrary Turing Machine by SS.

At the top, Figure 5 shows a classical one-tape Turing machine. There is a
single unending tape, with each cell holding a 0 or a 1. There is a control, which
has a single reading head at a given cell of the tape. The control is in one of a

152 NEWELL

finite set of states, Ql, 42 . . . ,Qn. For the control to be in a particular state
implies it will do the following things:

It will read the symbol on the tape, i.e., detect whether it is 0 or 1.

It will write a symbol on the tape, either a 0 or 1 (as determined by the state and the
symbol read).

It will move the tape head one square, either to the left or the right (as determined by the
state and the symbol read).

It will change itself to be in a new state (as determined by the state and the symbol
read).

Instead of going to a new state, the machine may come to a halt.

Nothing is said about what sorts of physical arrangements are used to create
the set of states for a given Turing machine and make it behave in the way
specified. But we can write down for each state what it will do, and we have done
this in Figure 5 for a couple of states (Ql, Q2, etc.) For each state we have two
entries, depending on whether the tape cell has a 0 or a 1: the symbol to be
written on the tape (either a 0 or a 1); whether to move left or right; and the state
to go to. If a special next state, halt, is given, the machine halts.

Any machine built to behave this way is a Turing machine. Turing ma-
chines differ only in the number of states they have and in what happens at each
state, within the limits described above. However, the class of all Turing ma-
chines is very large-by using enough states (and it may take a very large
number) the input-output behavior of any physical mechanism can be approxi-
mated as closely as required. It is one of these maximal class of machines, even
though a Turing machine’s moment by moment behavior seems very restricted.

The bottom of Figure 5 gives the program in SS that simulates an arbitrary
Turing machine. The Turing machine itself must be represented. This is done
entirely within the memory of SS, rather than in terms of the external input and
output interfaces of SS . For any reasonable input and behave operators this extra
translation would be straightfotward. The representation uses three types of
symbol structures, one for the tape cell and the other two for the state of the
Turing machine control. The tape cell has three roles: Content holds the tape-
symbol, either 0 or 1; lefr holds the symbol for the tape cell to the left; and right
holds the symbol for the tape cell to the right. The Turing machine state has two
roles: if-0 to hold the specifications for what to do if the tape cell holds 0, and if-1
for what to do if the tape holds 1. Each specification (the third symbol structure
type) has three roles: Content holds the tape-symbol to be written, either 0 or 1;
tnove holds the direction to move the tape, either left or right; and next holds the
symbol for the next state to go to.

There is a single program expression, called TM, which accomplishes the
simulation. TM consists of doing a sequence of six subprograms, each of which

PHYSICAL SYMBOL SYSTEMS 153

accomplishes one step of the basic definition. There is a symbol T for the current
tape cell under the head, a symbol S for the current state of the Turing machine
control, and a symbol A for the actions specified by the state (which will be
different depending on the tape symbol). The program is shown as a single nested
expression with many subexpressions. This is simply for convenience of reading;
it does not indicate any additional properties of SS. Complex subexpressions are
constructed entirely through the use of assignment. In each case what occurs in
an expression is a symbol, which is assigned to the subexpression. Thus, the
actual representation of TM is:

TM: [do TM1 TM2 TM3 TM4 TM5 TM]

TMI: [do TM1 1 TM12 TM131

TM1 1: [read content T]

TM 12: [continue-if 0]

TM13: [assign A TM1311

TM131: [read if-0 S]

TM2:

And so on through the whole expression.

Let us take up the steps of TM in order.

1. The first step reads the symbol on the tape and if it is 0 assigns the symbol A to be the
actions specified in case 0 occurs, i.e., the substructure at if-O.

2. The second step similarly assigns A to be the actions specified at if-l, if 1 is the tape
symbol. (Only one of the two possible assignments to A will occur, since they are
mutually exclusive.)

3. The third step writes the symbol specified via A into the tape-cell. This is a simple
transfer of a symbol; it even occupies the same role in both structures, i.e., content.

4. The fourth step moves the tape left or right by using the symbol specified via A as the
role symbol to extract the left or right link from the tape-cell.

5. The fifth step is to assign S to be the next state as specified via A.
6. The sixth and final step is to,do TM again, which repeats the entire interpretation, now

on the changed values of T and S.

This demonstration of universality is transparent, because the universality
of some given system (here, Turing machines) has already been established, and
the system itself (here, SS) has reasonable properties as a programming system.

Of course, it is necessary that the program be correct. In fact, two bugs
exist in the present version. One arises because we didn’t take care of halting.
This requires more conventions: The Turing machine halts if the symbol half
occurs for the next state; then TM should exit and return to whatever program
executed it, with the current tape cell (T) as output. The other bug arises because

154 NEWELL

the tape for a Turing machine is of indefinite extent, while the representation of
the tape in SS necessarily consists of only a finite number of symbol structures,
one for each cell. It is necessary for the simulation to extend the tape in either
direction, if it runs off an end. Again, by convention, the symbol tape-end
occurring in a tape cell at either left or righr will indicate the end of the tape.

TM-Exac: [do TM T]

TM: [do

[do [read content T] [continue-if 0] [assign A [read if-O s]]]

[do [read content T] [continue-if l] [assign A [read if-1 s]]]
[write T content [read content A]]

[assign T [do [read [read mwe A] T]

[continue-if tape-end]

[assign New-T [copy T]]

[write New-T content 0 [read [read move A] other] T]

[write T [read move A] New-T]

New-T]]
[assign S [read next A]]

[exit-if halt]

TM1
other: [right:left l&right]

Figure 6. Correct Simulation of Arbitrary Turing Machine by SS.

Just for completeness, a correct version of the program appears in Figure 6.
To correct the first bug, a top level program TM-Exec is defined, which simply
executes TM and, when it is done, outputs T. Correspondingly, TM now tests if
the new S is halt and exits if it is. For the other bug, TM senses whether the next
tape cell is the symbol tape-end and, if so, extends the tape. This occurs en
passant within the expression for moving the tape, [assign T [read [read move
A] T]] , by performing the regular operation within a do-sequence where it can
continue if tape-end is found. It then creates a new tape cell (calling it New-T)
and links it up in the several ways necessary. It ends by handing the new cell (as
New-T) to the assign operator, just as if that cell had been found initially.

4. GENERAL SYMBOL SYSTEMS

We can now describe the essential nature of a (physical) symbol system. We start
with a definition:

Symbol sysrems are the same as universal machines.

It may seem strange to define symbol systems to be universal machines.
One would think that symbol systems should be defined to be that class of

PHYSICAL SYMBOL SYSTEMS 155

systems that has symbols according to some abstract characterization. Then it
would be a fundamental theoretical result that symbol systems are universal.
However this way is not open to us, without a certain amount of scientific
legerdemain. The fact is that we do not have an independent notion of a symbol
system that is precise enough to counterpoise to a universal machine, and thus
subsequently to prove their equivalence. Instead, we have discovered that uni-
versal machines always contain within them a particular notion of symbol and
symbolic behavior, and that this notion provides us for the first time with an
adequate abstract characterization of what a symbol system should be. Thus,
tautalogically , this notion of symbol system, which we have here called physical
symbol system, is universal.

Does not SS, the machine we have just defined, provide a paradigmatic
example that could be suitably generalized to define the class of symbol systems?
True, SS was put together precisely to bring out the essential properties of
symbols. Alas (for such an enterprise), SS and all its kindred have emerged
simply as reformulations of the concept of universal machines. Historically, we
are genuinely in the position of discoverers, not inventers. For analytic purposes
we can certainly now propose axiomatic formulations of symbol systems and
prove their equivalence to universal machines. But I prefer an exposition that
emphasizes the dependence, rather than the independence, of the notion of (phys-
ical) symbol system on the notion of universal machines.

Thus, our situation is one of defining a symbol system to be a universal
machine, and then taking as a hypothesis that this notion of symbol system will
prove adequate to all of the symbolic activity this physical universe of ours can
exhibit, and in particular all the symbolic activities of the human mind. In regard
to our list of constraints of mind in Figure 1, two seemingly separate constraints
(universality and using symbols) have been satisfied by a single class of systems.

We can now proceed to the essential nature of symbols and symbolic
behavior in universal systems and to their generality. Note, however, that univer-
sal machines provide a peculiar situation with respect to what is essential. Every
universal machine exhibits in some form all the properties of any universal
machine. To be sure, differences exist among universal machines-in primitive
structure, in processing times, in sensitivities, and in processing reliabilities.
Though important-even critical-for some aspects of the phenomena of mind,
these differences are not critical for the nature of symbols. Thus, when we focus
on certain properties, we are providing an emphasis, rather than separating what
cannot in truth be separated.

We start with a discussion of designation and interpretation. Then we go
through the operators of SS. Though defined as specific operators for a specific
machine, each corresponds to a general functional capability. Each operator thus
raises the question of the necessity of this functional capability to a symbol
system and also of the forms that it can take in alternative implementations while
still accomplishing the essential function.

156 NEWELL

4.1. Designation

The most fundamental concept for a symbol system is that which gives symbols
their symbolic character, i.e., which lets them stand for some entity. We call this
concept designation, though we might have used any of several other terms, e.g.,
reference, denotation, naming, standing for, aboutness, or even symbolization or
meaning. The variations in these terms, in either their common or philosophic
usage, is not critical for us. Our concept is wholly defined within the structure of
a symbol system. This one notion (in the context of the rest of a symbol system)
must ultimately do service for the full range of symbolic functioning.

Let us have a definition:

Designnriont An entity X designates an entity Y relative to a process P. if, when P
takes X as input, its behavior depends on Y.

There are two keys to this definition. First, the concept is grounded in the
behavior of a process. Thus, the implications of designation will depend on the
nature of this process. Second, there is action at a distance: The process behaves
as if inputs, remote from those in it in fact has, effect it. This is the symbolic
aspect, that having X (the symbol) is tantamount to having Y (the thing desig-
nated) for the purposes of process P.

The symbols in SS satisfy this definition of designation. There are a set of
processes (the operators and the control) to which symbols can be input, and
when so input the processes behave as a function, not of the symbols themselves,
but of what the symbols have been assigned to-what, therefore, they designate.

The question of what symbolization implies in SS can only be worked out
by understanding the nature of these processes, which can now be called sym-
bolic processes. That these processes taken together are sufficient for attaining
universality states the biggest implication. That this universality is attained only
because of the existence of symbols provides the conceptual knot that makes the
notion deep.

In SS, the second aspect of the definition is provided by the mechanism of
access, which is part of the primitive structure of SS. It provides remote connec-
tions of specific character, as spelled out in describing assign. This specification
is generated by enumerating for each of the ten operators plus the control the
precise access needed to carry out their specified operations. Exactly these and
no other forms of access are needed. This access is needed to exactly three types
of entities: symbol structures, operators, and roles in symbol structures. Thus,
access is no homunculus, providing that this finite set of primitive properties can
be realized in physical mechanisms. We already know, through our experience
with digital computers, that this is not only possible but eminently practical.

The great magic comes because this limited capability for accessing sup-
ports a general capability for designation. The set of processes must be expanded
to include programs, and their inputs must be taken to include expressions. Then,
for any entity (whether in the external world or in the memory), if an expression

PHYSICAL SYMBOL SYSTEMS 157

can be created at time T that is dependent on the entity in some way, processes
can exist in the symbol system that, at some later Time T’, take that expression as
input and, behaving according to the recorded structure, behave in a way depen-
dent on the entity. Hence these expressions designate the entity.

An important transitive law is illustrated in this, in which if X designates Y
and Y designates Z, then X designates Z. In the case in point, there is first the
acquisition which, through access to the actual external structure, creates a
structure in the memory of the system that depends on this external entity; then
the preservation of that memory structure through time yields a memory structure
at some later time that still depends on the object; finally, the access associated
with the internal symbol makes that structure available to a process, which then
behaves accordingly, impressing it on still another entity and instantiating the
relation of designation.

Because of the universality of symbol systems, the scope of this capability
for designation is wide open and hardly yet explored. To repeat an earlier re-
mark, the power of a designatory capability depends entirely on the symbolic
processes to which it is coupled. If these processes are restricted enough, the total
system may be able to accomplish little; if they are universal, then the total
system may be able to do all that is required in human symbolization.

This general symbolic capability that extends out into the external world
depends on the capability for acquiring expressions in the memory that record
features of the external world. This in turn depends on the input and behave
operators, whose details have not been described, but which limit access to the
external world in some fashion. Such limits do not affect the capability of the
symbol system to designate arbitrary entities, though they might limit the extent
to which such capabilities could be utilized by a given system.

Designation is at the heart of universality. For one machine to behave as an
arbitrary other machine, it must have symbols that designate that other. Once the
input of the to-be-universal machine is separated into two parts, one of which is
an instruction about something outside the machine (to wit, the other machine),
there is no way out from generating some symbolic capability. That this symbolic
capability should be general enough to encompass all notions of symbolic action
derives (if indeed it is true) from the scope of what was to be symbolized, namely
any input-output function. But the kernel of the notion of symbols arrived by the
single act of getting a machine to act like something other than what it is.

A distinctive feature of SS is taking the general capability for symbols and
access as central. Most formalizations of the notion of universal machine (all but
those such as Lisp that stem from the work in artificial intelligence) take as
central a more primitive capability for accessing, reflecting an interest in show-
ing how universality can be build up by a machine. For’ instance, the Turing
machine has symbols for the states of the control. These have the property of
access, but are fiied and unchangeable-symbols cannot be created or reas-
signed. They do not provide the indefinitely extendable symbol system that is

required for universality, but only some of the machinery for it. The indefinitely
extendable symbol system is constructed as an addressing scheme on the (indefi-
nitely extendable) tape. The construction is made possible by the tape movement
operators, which provide the primitive accessing capability.

The underlying physical mechanism for obtaining access is some sort of
switching mechanism that opens up a path between the process and the thing
accessed. There are a wide variety of such switching mechanisms, but they are
closely related to search. If the medium is recalcitrant, e.g., the Turing machine
tape, the symbol system is implemented through a linear search of the tape and a
match of a finite set of tape-symbols that serves to address the expression acces-
sed. In more perspicuous media, i.e., a preorganized addressing switch for a
random access memory, the implementation takes features from the symbol
token (the address) and uses them to construct a direct path to the requisite
location.

The usual formulations of universal machines also tend to use the term
symbol for the alphabet of distinctive patterns that can occur in the memory
medium (e.g., the 0 and 1 tape symbols for our Turing machine). As defined,
these entities are not symbols in the sense of our symbol system. They satisfy
only part of the requirements for a symbol, namely being the tokens in ex-
pressions. It is of course possible to give them full symbolic character by pro-
gramming an accessing mechanism that gets from them to some data structure.
Table look-up mechanisms provide one scheme. Actually, the alphabet of such
symbols is usually quite small (e.g., only two for our version of a Turing
machine), so they operate more like letters, i.e., the elements out of which a
genuine set of symbols can be constructed.

4.2. Interpretation

The term interpretation is taken here in the narrow sense it has acquired in
computer science:

Inrerprefarion: The act of accepting as input an expre! ion that designates a process
and then performing that process.

All the behavioral flexibility of universal machines comes from their ability
to create expressions for their own behavior and then produce that behavior.
Interpretation is the necessary basic mechanism to make this possible. The
general designatory capabilities of symbol systems underly the ability to create
the designating expressions in the first place. Although little can be said about
exact boundaries, some interior milieu must exist within which the symbol SYS-

tern can freely and successfully interpret expressions. Given this, obtaining
other performances according to specification can be compromised in various
ways, e.g., by error, by indirect and shared control, or whatever.

The symbols that designate operators are absolutely essential, and no quan-

PHYSICAL SYMBOL SYSTEMS 159

tity of symbols for expressions or roles can substitute for them. These are the
symbols that have an external semantics wired into them-which finally solve
Tolman’s problem of how his rats, lost in thought in their cognitive maps, could
ever behave. The number of such symbols can be shrunk by various encodings
and parametrizations, but it cannot vanish. Equally (and more likely for real
systems), the number can be much larger and the decomposition can be radically
different than for SS.

The control exhibits a basic tripartite decomposition of the total processes
of the machine, which can be indicated by jconf~~l + (operafors + data)). Be-
havior is composed by one part, the control, continually bringing together two
other parts, the operators and the data, to produces a sequence of behavior
increments (i.e., the operation formed by the application of the operator to the
data). This will be recognized as familiar from every computer, programming
language, and mathematical system.* This structure can be taken as an essential
organizational feature of all symbolic systems.

This organization implies a requirement for working memory in the control
to hold the symbols for the operator and data as they are selected and brought
together. Our description of SS in Figure 2 shows only the place for the active
symbol and for the input and output symbols for the operatqrs. This is the tip of
the iceberg; perusal of Figure 4 shows that additional working memory is needed.
What memory will vary with the type of universal machine, but some is always
implied by the act of decomposition. Thus working memory is an invariant
feature of symbol systems.

However, many things about the control of SS are not invariant at all over
different types of universal symbol systems. One must be careful to treat SS as a
frame for describing functional capabilities, abstracting away from many of its
structural features. Three examples of this are:

SS’s control requires an unbounded amount of memory (essentially a pushdown stack)
because the nesting of programs can be indefinitely extended. This is inessential,
though it makes for simplicity. Normally control is a fixed machine with fixed
memory; and regular memory (which is unbounded) is used according to some
memory management strategy to handle excessive embedding.

SS has a serial control, i.e., a single control stream. This is inessential, though it also
makes for simplicity. There may be multiple control streams of all sorts. The input
and behave operators may both be evoked and operate in parallel. There may be
multiple controls, a few or many, functionally specialized or all equivalent, and
interconnected in a variety of ways. The parallel units may themselves be universal
machines, or limited controllers, or only operators. Under some conditions the
resulting processing aggregate is not universal, under many it is.

SS is a totally reliable system, nothing in its organization reflecting that its operators,

*Mathematics exhibits the application of operator to data, i.e., function to argument, while
leaving the control indeterminate, i.e., in the hands of the mathematician.

160 NEWELL

controi or memory could be erroful. This is inessential, though it again makes for
simplicity. As was noted earlier, universality is always relative to physical limits,
of which reliability is one. Once fundamental components are taken as having
probabilities of failure, then ultimate performance is necessarily probabilistic. If
failure probabilities are significant, the system organization can include counteract-
ing features, such as checking, redundant processing, and redundant memory
codes. Up to a point universality can be maintained as a practical matter; at some
point it is lost.

All of these complexities are important in themselves, and some of them lie
behind other constraints in Figure 1. They do not seem of the essence in under-
standing the nature of symbolic capability.

4.3. Assign: Creating Designations

The function of the assign operator is to create a relation of access, hence of
designation, between a symbol and an entity. It is, of course, limited to the
access relations supported by the underlying machinery of SS: between SS’s
symbols and SS ‘s expressions, roles, and operators.

Assign implies several important properties:

At any time. a symbol designates a single entity.
Many symbols can designate the same entity.
A symbol may be used to designate any entity.

SS provides absolute and uniform adherence to these properties, but this is not
necessary. For instance, from SS ‘s simulation of a Turing machine, it can be seen
that the requirements for multiple assignment and reassignment of a symbol to an
arbitrary entity are needed only for the small set of working symbols used in the
TM program (T, S, and A). All the other symbols (content, do, TM, .) can
have fixed assignments. From this, the more general capability can be built
up-which is what programming the simulation demonstrates.

The situation here generally applies. Small amounts of the requisite
capabilities can be parlayed into the full-flecged capability. The minimal condi-
tions are rarely interesting from a theoretical view, though successful elimination
of an entire functional capability can be revealing. Minimal basic capabilities
often imply gross inefficiencies and unreliabilities. Typical is the additional level
of interpretation, if simulation is used to recover the additional capabilities (as in
our example). Thus, symbol systems that satisfy additional constraints of Figure
1 are likely to satisfy pervasively such properties as those above.

It is often observed that the symbols of formal systems are totally abstract,
whereas symbols as used by humans often have information encoded into the
symbol itself, i.e., that is not arbitrary what a symbol is used for. The word for
not being happy is “unhappy, ” in which some knowledge about what the word
designates is available from an analysis of the word itself. In plane geometry

PHYSICAL SYMBOL SYSTEMS 161

small letters (a, b, . . .) are sides of triangles and capital letters (A, B, . . .) are
their opposite angles. In general, the use (and usefulness) of encoded names has
no bearing on the basic nature of symbol systems. Encoded names can be taken
to be abstract symbols with bound expressions that provide the information in
the encoded name. Thus, one expression has been granted a preferred access
status. Though the assignment of symbols to entities has been limited, this will
have an effect only if no freely assignable symbols remain as part of the system.

4.4 Copy: Creating New Memory

By applying copy whenever needed, SS obtains both an unbounded supply of
expressions (hence of memory) and of symbols. That copy creates a copy is
unessential, although by doing so it accomplishes a sequence of rends and
writes. The essential aspect is obtaining the new expression and the new symbol.
Neither can be dispensed with.

One of the few necessary conditions known for universal machines is:

A universal machine must have an unbounded memory.

The classical machine hierarchy of finite state machines, pushdown automata,
linear bounded automata and Turing machines, expresses the gradation of capa-
bility with limitations in memory (Hopcroft & Ullman, 1969). Though essential,
the condition of unboundedness is of little import, since what counts is the
structure of the system. In all cases, the structure of the unbounded memory must
eventually become uniform. Ultimately, SS has just a supply of undifferentiated
stufS out of which to build expressions; the Turing machine has just a supply of
undifferentiated tape cells. Thus, for every machine with unbounded memory,
there are machines with identical structure, but bounded memory, that behave in
an identical fashion on all environments (or problems) below a certain size or
complexity.

The unimportance of actual unboundedness should not be taken to imply
the unimportance of large memory. The experience in AI is everlastingly for
larger effective memories (i.e., memories with adequately rapid access). A key
element in list processing was the creation of dynamic memory, which effec-
tively removed the memory limit problem from the operation of the system,
while, of course, not removing it absolutely (i.e., available space eventually runs
out). It is no accident that humans appear to have unbounded long-term memory.
Thus, rather than talk about memory being actually unbounded, we will talk
about it being open, which is to say available up to some point, which then
bounds the performance, both qualitatively and quantitatively. Limited, in oppo-
sition to open, will imply that the limit is not only finite, but small enough to
force concern. Correspondingly, universal can be taken to require only suffi-
ciently open memory, not unbounded memory.

Symbols themselves are not memory; only expressions are. Though in SS

162 NEWELL

symbols and expressions come into existence together, they are independent and
could have separate create operators. Many symbols may be assigned to a single
expression and many expressions may have the same symbol (over time) or may
be unsymbolized and be accessible through other means. Symbols are the pat-
terns in the symbol structure that permit accessing mechanisms to operate. Having
an open number of symbols, but only a limited amount of memory, is not
sufficient for a universal machine. On the other hand, with only a limited set of
symbols, but an open supply of expressions, it is possible to create an open set of
symbols. The use of a limited alphabet to create words is paradigmatic. How-
ever, just the anatomy of alphabets and words does not reveal the key issue,
which is the construction of an accessing mechanism that makes the words
behave like symbols, i.e., designate.

SS actually has an open supply of expressions of each type (and exactly
what types exist was not specified). As might be expected, only a single source
of openness is needed, providing it is not peculiarly tucked away, as in a
pushdown stack. Further, SS’s definition does not specify whether expressions
themselves are limited or whether some of them can be open. This is again an
unessential issue, as long as at least one open source is available for construction
of whatever facilities are needed. The creation of an open structure type, the list,
out of an open set of expressions of a limited structure type, thepair consisting of
a symbol and a link, is paradigmatic. Though conceptually simple, such a con-
struction was a major step in creating appropriate symbol systems.

4.5 Write: Creating Arbitrary Expressions

Another obvious, but important, necessary capability of a universal machine is:

A universal machine must be able to create expressions of arbikaty character.

SS does this through a single uniform operator, write, though there are indefi-
nitely many complex and indirect ways of attaining the result. To be unable to
create an expression, by any means at all, would imply a failure to be universal
(e.g., to simulate a machine that did produce that expression as an output).

In the usual way of specifying universal machines, particular repre-
sentations are used for the expressions, e.g., the Turing tape or Lisp lists. Much
of the idiosyncracy of such systems arises from the need to encode all structures
of interest into this fixed structure. SS has remained general on this score,
admitting only a basic capability for having expressions with distinct roles. Thus,
we simply defined a new data type for each entity we needed to discuss,-
programs, tape cells, and machine states.

It is unclear how to state the fundamental capability provided by ex-
pressions, but easy enough to exhibit it in simple and paradigmatic form. It is not
enough to have only symbols. Expressions permit more than one symbol to be
brought together in a way that is not determined wholly by the symbols, but

PtiYsl~L smmoL SK~TEMS 163

provides additional structure, hence discriminability. This is what SS has in the
roles-actually, in the association from the role symbol to its content symbol.
There are an indefinite number of ways to provide such added structure to yield
symbol expressions.

In SS’s scheme, the symbols for roles are relative symbols. They differ in
this respect from the symbols for expressions or operators, which are absolute.
Given the symbol move, which designates the role in the tape-cell of the Turing
machine, the process that takes roles as input, namely, write and read, can x
access the appropriate location in any tape-cell expression. Thus, role symbols
are functions of one input (the expression), and akin to operators. These relative
role symbols can be replaced by absolute symbols that uniquely designate the
locations in particular expressions, though an additional operator is required to
obtain these location symbols. This is the standard recourse in common pro-
gramming languages, which provide addresses of list cells and array cells. Thus,
all symbols can be absolute, with all context dependence relegated to a limited
set of operators.

4.6. Read: Obtaining Symbols in Expressions

Read is the companion process to write, each being neceskry to make the other
useful. Read only obtains what was put into expressions by write at an earlier
time; and a write operation whose result is never read subsequently might as
well not have happened.3

The read-write coupling emphasises another necessary principle of sym-
bol systems:

Memory must be stable.

Though much less investigated than the question of amount of memory, this
principle is of the same character. In so far as memory is unreliable, the ability of
the symbol system to deliver a given input-output function is jeopardized. Such a
limitation does not destroy the functional character of a symbol system; it only
modulates it. Of course, different systems behave differently under unreliability,
and systems can be designed to mitigate the effects of unreliability. Such consid-
erations are outside the bounds of the paper (though they show up as one of the
constraints in Figure 1).

In SS the reading operator was defined in the classical way, namely, a local
operator whose scope was a given expression. This provides no global access to
the memory. Indeed, SS is totally dependent on the initial data structures to

‘This is too strong: The read operator is not the only process that reads expressions; control at
least reads programs; and if the expression might have been read but wasn’t because of a contingency
in the environment, then the write operator still would have been useful, analogous to insurance that
is never cashed.

164 NEWELL

provide linkages around the memory. A more global accessing operator could
also be given:

Find the expression that matches roles
Produces the expresSion or nil

(fmd RI SI .)

In SS, attention must be paid to constructing access links to the new expressions
created by copy; this is usually done by virtue of their symbols occurring in other
expressions that are being built. Given other processing organizations, such as
ones with parallel activity, then a find operation would be necessary, since the
access links could not exist for read to suffice as a retrieval mechanism.

Such a global operator cannot as it stands replace the local one, since it
identifies expressions by content, not by role in some other expression. How-
ever, versions can be created to combine both functions.

4.7 Do: Integrating and Compositing Action

To be able to describe behavior in expressions, the behavior must be decom-
posed, whether for a description indirectly as a machine that generates the be-
havior, or any other type of description. All such decompositions involve both
primitives and combining schemes. For SS, doing a sequence of operations is the
combining operation. It reflects directly a necessary requirement on decomposi-
tion:

Universal machines must be able to determine the future independent of the past

Looked at in terms of a prespecified input-output function, it is only necessary
that the future beyond the point of instruction be open. But if new instructional
input is permitted at any time (the realistic version of the flexibility constraint),
then any commitment for the entire future can be a genuine restriction of flexibil-
ity. Instruction following such a commitment might require its undoing.

Other forms of decomposition exist besides the pure time-slice scheme
used by SS (and also by existing digital computers and programming languages),
in which each operator specifies completely what happens in the next time
increment, leaving complete freedom of specification beyond. For instance, the
commitments of the past could decay in some way, rather than cease abruptly;
the future action, although still free to be anything, could be taken from a
different base line in some way. Little is known about such alternative decompo-
sitions in terms of providing universal instructable behavior.

Do as an operator can be eliminated, because its essential function is also
performed by the control. Interpreting the arguments of an operator prior to
executing that operator (which corresponds to function composition) provides the
essentials of a time decomposition. Thus, the function would still be provided,
even though the do operator itself were eliminated.

PHYSICAL SYMBOL SYSTEMS 165

4.8 Exit-if and Continue-if: Converting Symbols to Behavior

One of the most characteristic features of programming languages is the exis-
tence of conditional operators, the in-then-else of Algol-like languages, the
branch on zero of machine languages, or the conditional expression of Lisp.
These operators seem to contain the essence of making a decision. Beside em-
bodying the. notion of data dependence in pure form, they also are unique in
embodying the conversion from symbols to behavior. They would appear to be a
functional requirement for universality. They do not seem so much deeply impli-
cated in the concept of symbols itself, but rather associated with the system that
operates with symbols.

However, it has been known since the earliest formulations of universal
machines that such conditionals are not uniquely required. The requirement is to
be able to compose all functions, and many other primitive functions provide the
essential combinative services. For example, the minimum function is often
used. It can be seen that taking the minimum of a set of elements effects a
selection, thus making a decision. But the minimum function has no special
symbol-to-behavioi character; it has the same form as any other function.

Thus, conditionals are a convenience in SS. They can be dispensed with
and the same work done by assign, copy, write, read and do. A simple way to
show this is to write the simulation of the Turing Machines without using the
conditionals. The universality of SS is shown by this program; hence the univer-
sality can be attained by whatever limited means are sufficient to accomplish this
simulation. Figure 7 shows this simulation without the conditional. This corre-

TM-Exsc: [do [assign [quote Next-step] [quote TM]] TM T]

TM: [do

[assign 0 [read if-0 s]]

[assign 1 [read if-l s]]

[assign A [read content T]]

[write T content [read content A]]

[assign T [read [read move A] T]]

[assign S [read next A]]

Next-stap]

tape-end: [do

[assign New-T [copy T]]

[write New-T content 0 [read [read move A] other] T]

[write T [read move A] New-T]

New-T]

other: [right:left l&right]

halt: [assign [quote Next-step] nil]

Figure 7. Elimination of Conditional Operators from Simulation of Turing Machine.

166 NEWELL

sponds to the completely correct simulation of Figure 6, so that all places where
conditionals originally occurred are covered.

It is instructive to understand the basic device in Figure 7. Conditionality is
the dependence of behavior on data. The data in the simulation are symbols.
Hence, each possible data symbol can be assigned whatever is to be the case if
that data symbol is encountered. The symbol that actually occurs and is accessed
brings with it the behavior to be taken.

There are three places where conditionals must be removed. The fist is
taking appropriate action, depending on 0 or 1. For this, 0 is assigned the action
specifications for 0, and 1 the action specifications for 1. Then accessing the
symbol that actually occurs in the tape cell, via (read content T), obtains the
action specification as a function of the occurring state. This is assigned to the
temporary working symbol, A, and the program can proceed as before.

The second place is sensing the end of the tape. Here, the symbol tape-end
is assigned to be the program that extends the tape. Due to the recursive interpre-
tation of control, accessing tape-end leads to the interpretation of this program,
which then fixes up the tape en passant. Thus, the main program, TM, never has
to deal with the problem explicitly.

The third place is exiting on halt. This is a little tricky, because a symbol
(halt) must be converted to a permanent change of behavior (exiting the infinite
loop of TM). The final step of TM, which is the recursive step to repeat TM, is
made into a variable symbol, Next-step. This is assigned to be TM in TM-Exec,
so that if nothing changes this symbol, TM, will be repeated, just as before. The
symbol halt is assigned to a program that assigns Next-step to be ml. Thus, if halt
is encountered, this program is executed, making TM into a straight-line pro-
gram, which will then exit. It is necessary to use quote in the assignments of
program symbols (Next-step and TM), or they would be executed inadvertantly

This style of programming illustrates an important relativity of view. From
the perspective of the program there is no choice and no decision; it simply puts
one foot in front of the other so to speak. From the perspective of the outside
observer a choice is being made dependent on the data. The views are reconciled
when it is seen that the program is constructing its own path, laying down each
next step just in front of itself, like a stepping-stone, and then stepping onto it.

4.9 Quote: Treating Processes as Data

All universal systems contain a distinction between operators and data (i.e.,
arguments). To create its own procedures, a system must distinguish some ex-
pressions as data at one time (when creating or modifying them) and as program
at another time (when interpreting them). This is a genuine contextual effect,
since the expression is to be same in either case. This is only a binary distinction,
and it can be achieved in many ways: by having a program memory as distinct
from a data memory, with a transfer operation to activate the program; by

PHYSICAL SYMBOL SYSTEMS 167

marking the program so the control will not interpret it and then removing the
mark to activate it; by having an execute operator that only interprets under
deliberate command; or by having a quote operator that inhibits interpretation on
command. For SS, since its control cycle is to interpret everything, the quote
command is the natural choice.

However, as Figure 5 again shows by producing the simulation without the
use of quote, this operator does not imply an additional primitive functional
requirement. What Figure 5 actually shows is that if a symbol system is willing to
operate in indirect simulation mode, the distinctions can be introduced by data
conventions. This is because the control of the system now becomes program-
mable.4

4.10. Behave and Input: Interacting with the External World

Behave and input have played a muted role in the exposition of SS, only because
the emphasis has been on the basic functional requirements for symbolization and
for universality. These capabilities must exist in some interior system, and thus
can be illustrated there, without involving the interaction with the external world.

Behave and input imply an extension of the basic access mechanism,
beyond the operators, roles and expressions, as described above. The symbols that
are operands in behave must access in some way the effector ,mechanisms. These
symbols can be viewed simply as additional operators which haven’t been
specified because there was no need to. Input, on the other hand, requires its
output symbols to reflect an invariant relation to the state of the external envi-
ronment (via states of the receptor mechanism). The invariance doesn’t have to
be perfect; it can even change over time (though not too rapidly). But without
some reliable transduction from external structure to symbols, the symbol system
will not be able to produce reliable functional dependence on the external envi-
ronment

General symbol systems include unlimited elaborations on behave and
input. In particular, versions of these operators need not link to a genuine
external world, but simply to other components of the total system that provide
additional computational devices. These may be integral to the actual operation
of the system in practice. Such additional facilities do not destroy the capability
for symbolic action. The only requirement is that they be symbolizable, i.e.,
have symbols that evoke them and symbols that reflect their behavior.

4.11. Symbol Systems Imply Universality

The notion of universality has been expressed to reveal how it contains a notion

‘The quotes can likewise be removed from Figure 7 by rewriting the TM program so it is a
nonprogram data structure that is interpreted by an SS program.

168 NEWELL

of symbol and symbol system. Though at the beginning of the section I claimed it
was inappropriate to act as if we had an independent characterization of symbol
system; it is now certainly useful to extract from the current formulation what a
symbol system might be, independent of the notion of universality. For instance,
this might lead to interesting variants of symbol systems that are not universal in
some important way (i.e., in some way other than physical limits).

Consider the following generalized characterization of the notions involved
in physical symbol systems:

Symbols as abstract types that express the identity of multiple tokens.

Expressions as structures containing symbol tokens.

Designation as a relation between a symbol and the entities it .symbolizes.

Interpretation as realizing the designations of expressions.

Operations of assigning symbols, and copying, reading, and writing expressions.

These notions all seem fundamental to symbolic functioning. It is difficult
to envision a notion of symbol that does not embody some version of these
capabilities, and perhaps much more besides. These notions are too vague to
actually define symbolic functioning. For instance, the statement about designa-
tion does not describe the properties of the relation, e.g., between the word
“cat” and the animal cat. The statement about interpretation leaves entirely open
what symbolic activity is actually about-it could easily hide a homunculus.
Still, these might form the thematic kernel from which to precipitate independent
characterizations of symbols.

In particular, there exists an instantiation of these notions that regains the
formulation of a physical symbol system. The chief additional ingredient
(abstracted away in generating the list above) is a notion of symbolic processing.
Designation is given a primitive basis primarily in the accessing of other ex-
pressions. Interpretation is given a formulation involving only expressions that
designate symbolic processing. Assigning, copying, reading, and writing are
taken as specific processing functions; in particular, reading is taken only as the
ability to obtain constituent symbols. These particularities would no doubt be
included in some fashion in any instantiation of the general notion of symbols
stated above. However, the instantiation for physical symbol systems is still
highly special, and much is missing: designation of external entities, wider
ranges of interpretive activity, and so on.

Yet, as we have seen, this process-oriented instantiation of these notions is
by itself sufficient to produce universality. No embedding of the symbol system
into a larger processing system with other capabilities is required, though suffl-
cient freedom from physical limitations (i.e., sufficient memory, reliability, etc .)
must exist. In the preceding discussion, the operations of exit-if, continue-if,

PHYSICAL SYMBOL SYSTEMS 169

do, quote, and find were shown to be collectively unnecessary to achieve uni-
versality. Thus, the operations that appear inherently involved in symbolic pro-
cessing (assign, copy, read, write, and interpret) are collectively sufficient to
produce universality. No augmentation with any nonsymbolic processing ma-
chinery is required. Although the argument was carried through on a particular
system, SS, it applies generally to the functional capabilities themselves.

A novel feature of physical symbol systems is the approach to symbolic
function, not just by processing, but by internal symbolic processing. The primi-
tive symbolic capabilities are defined on the symbolic processing system itself,
not on any external processing or behaving system. The prototype symbolic
relation is that of access from a symbol to an expression, not that of naming an
external object. Thus, it is an implication of the formulation, not part of its
definition, that the appropriate designatory relations can be obtained to external
objects (via chains of designation). Because of this, the exact scope of that
designatory capability is left open, implicit in the ramifications of universality.

Thus, we are lead finally to the following hypothesis:

Any reasonable symbol system is universal (relative to physical limitations).

It is important to distinguish symbol systems that are computationally limited
because of physical constraints or limited programs and data from symbol sys-
tems that fall short of providing universality because of structural limitations.
The hypothesis refers to the latter.

Despite this hypothesis, one might still want to formulate a notion of
symbol system that was not also universal, even though it would be limited. One
general path might be to deny the process base. But this seems unfruitful, since
symbol systems must ultimately be used by processing systems, and this path
simply keeps the processing implications off stage. The addition of a processing
base would very likely simply convey universality. Another possibility is to
consider systems with many symbol systems, each ranging over severely limited
domains with limited intercommunication. These could violate some aspects of
assignment, so that genuinely limited systems might emerge. But,.in general,
looking for a more limited conception of symbolic system, in order to get some-
thing conceptually independent of universality, does not seem particularly re-
warding. This seems especially the case in trying to understand the human mind,
which surely exhibits extreme flexibility even though it must cope with some
stringent physical limitations.

5. THE PHYSICAL SYMBOL SYSTEM HYPOTHESIS

Having finally made clear the nature of a physical symbol system, the major
hypothesis can be stated explicitly (Newell & Simon, 1976):

170 NEWELL

Physical Symbol System Hypothesis: The necessary and sufficient condition for a physi-
cal system to exhibit general intelligent action is that it be a physical symbol
system.

Necessary means that any physical system that exhibits general intelligence will be an
instance of a physical symbol system.

Sujicienr means that any physical symbol system can be organized further to exhibit
general intelligent action.

General intelligent acdon means the same scope of intelligence seen in human action:
that in real situations behavior appropriate to the ends of the system and adaptive to
the demands of the environment can occur, within some physical limits.

The hypothesis takes as given the identity of symbol systems and universal
systems, and asserts their connection to rationality, a concept which did not enter
into their formulation. The hypothesis implicitly asserts that physical symbol
systems cover human symbol systems, since general intelligence includes human
intelligence. It can be taken as also asserting the essential role of human symbols
in human rational behavior, if that cannot be taken for granted.

The hypothesis implies that symbol systems are the appropriate class within
which to seek the phenomena of mind. However, it does not mention mind
explicitly, but rather the notion of general intelligent action. It thereby implicitly
takes general intelligence to be the key to the phenomena of mind. Given the
democracy of the constraints in Figure 1, this may seem a little presumptuous. If
so, it is not a presumption that makes a substantial difference in the short term.
The systems that satisfy all of the constraints will undoubtedly be a highly
distinctive subclass of those that satisfy only the three involved in the
hypothesis-universality, symbols, and rationality. This distinctiveness could
well include phenomena of mind that would make the total class appear quite
unmind-like. That possibility does not affect the tactical issue of approaching the
phenomena of mind via this class of systems.

The statement of necessity is straightforward. A general intelligent system,
whatever additional structures and processes it may have, will contain a physical
symbol system. It will be possible to find what serves as symbols and as ex-
pressions; and to identify what processes provide the functions that we have
enumerated and discussed. The variability of realization discussed in the next
section may make these structures and processes far from obvious, but they will
exist.

The statement of sufficiency requires a little care. A universal system
always contains the potential for being any other system, if so instructed. Thus, a
universal system can become a generally intelligent system. But it need not be
one. Furthermore, instructability does not imply any ability at self-instruction, so
that there may be no way to transform such a system into one that is generally
intelligent, i.e., no external agent with the capability to successfully instruct it

PtiYslaL SYMBOL SYSTEMS 171

need be available. Given the nature of universality, this sufficient condition does
not have much bite; it is the necessary condition which carries the strong implica-
tions.

The notion of general intelligence can only be informally circumscribed,
since it refers to an empirical phenomenon. However, the intent is clear-to
cover whatever will come to be called intelligent action as our understanding of
the phenomenon increases. The term general excludes systems that operate only
in circumscribed domains. If the domain is narrow enough, considerable intellec-
tual power may be possible from systems that are not physical symbol systems.
Thus, a specific enumeration algorithm for chess that achieved master level, but
was realized directly in hardware in a way that avoided the full capabilities of a
symbol system, would not provide a counterexample to the hypothesis. General
intelligence implies that within some broad limits anything can become a task. It
would suffice to ask if the given narrow algorithm could also accept other novel
tasks; and on this it would, per hypothesis, fail.

All real systems are limited: To be generally intelligent does not imply the
ability to solve or even formulate all problems. We have used the phrase ph~jsical
limits to indicate the effects of underlying limits to speed, memory size, reliabil-
ity, sensitivity, etc. The existence of such limits implies the possibility of quib-
bles in assessing the hypothesis, if the limits are so stringent as to deny a system
any reasonable scope for positive performance. The formulation above does not
attempt to be precise enough to deal with such quibbles.

5.1. Why Might the Hypothesis Hold?

That the hypothesis refers to rationality, rather than more generally to
phenomena of mind, is not just a rhetorical preference. The hypothesis is based
on the empirical evidence of the last twenty years in artificial intelligence. That
evidence specifically relates to rational goal-directed behavior, and not to the
other constraints (though some evidence exists touching one or two others).
Thus, the hypothesis really must be cast in this narrower form.

It is important to understand that the hypothesis is empirical and rests on
this body of experience. Artificial intelligence has made immense progress in
developing machines that perceive, reason, solve problems, and do symbolic
tasks. Furthermore, this has involved the deliberate use of symbol systems, as
witnessed in the development and exploitation of list processing. This use of
symbolic computation distinguishes artificial intelligence from most other enter-
prises within computer science (though not all). These advances far outstrip what
has been accomplished by other attempts to build intelligent mechanisms, such as
the work in building robots driven directly by circuits; the work in neural nets, or
the engineering attempts at pattern recognition using direct circuitry and

172 NEWELL

analogue computation.5 There is no space in this paper to review the evidence for
this, which covers the development of an entire field over almost a quarter
century. Reverence to the most.recent textbooks will have to suffice (Nilsson,
1980; Winston, 1977).

Given our present understanding of intelligent programs, an analysis can be
made of why symbol systems play a necessary role in general intelligent action.
Again, there is no space to do more than outline this analysis here. There seem to
be three main points.

1. A general intelligent system must somehow embody aspects of what is to be attained
prior to attainment of it, i.e., it must have goals. Symbols that designate the situation
to be attained (including that it is to be attained, under what conditions, etc.) appear to
be the only candidate for doing this. It might seem an alternative to build goal-
orientation into the structure of the system at design time (as is often done in programs
that have a single fixed task, such as playing a game). However, this does not suffice
for a general intelligence facing an indefinite sequence of novel and sufficiently di-
verse goal situations.

2. A general intelligent system must somehow consider candidate states of affairs (and
partial states) for the solutions of these goals (leading to the familiar search trees).
Symbols in a symbol system appear to be the only way to designate these, especially as
the diversity and novelty of the states and partial states increase without bound.

3. An intelligent system must fashion its responses to the demands of the task environ-
ment. As the diversity of tasks expand, i.e., as the intelligence becomes general, there
would seem to be no way to avoid a flexibility sufficient to imply universality and
hence symbols.

The backbone of the above argument is: (1) rationality demands designa-
tion of potential situations; (2) symbol systems provide it; (3) only symbol
systems can provide it when sufficient novelty and diversity of task are permit-
ted. This latter aspect is analogous to standard arguments in linguistics concem-
ing the implications of generation of novel sentences.

6. REALIZATIONS AND SYSTEM LEVELS

Symbol systems, as described, are abstract. We now need to consider their
realization in our physical universe. The key to this is our experience with the
construction of digital computers. That current digital technology involves a
hierarchy of levels is well known and appreciated. However, it is part of the story
of symbol systems and needs to be recounted briefly.

A standard set of levels has emerged as digital computers have been de-
veloped. These levels are levels of description, since it is always the same
physical system that is being described. Each level consists of characteristic

The term direct is used as a shorthand to indicate that the systems do not use digital
computers as a major component.

PHYSICAL SYMBOL SYSTEMS 173

components that can be connected together in characteristic fashion to form
systems that process a characteristic medium. The different descriptions form a
sequence of levels, because the components, connections and media of one level,
are defined in terms of systems at the next lower level.

The bottom-most level starts with the description of the physical devices in
electronic terms. It is usually called the device level. Above this is the circuit
level, which consists of electrical currents and voltages, traveling in wires.
Above that is the logic level, in which there occur registers containing bits, with
transfer paths between them and various logical functions occurring when bits
pass through functional units. Operation here is entirely parallel, as it is at all
lower levels. The next level is the program level which contains data structures,
symbols (or variables), addresses, and programs. Operation is sequential, con-
sisting of control streams produced by interpreters, though concurrent control
streams may exist. This is the level of the symbol system as it occurs in digital
computers. Above the programming level is the level of gross anatomy, the
so-called PMS (Processor-Memory-Switch) level. Here there is simply a
medium, called data or information, which flows along channels called links and
switches and is held and processed by units called memories, processors, con-
trols, and transducers. It is the level at which you order a computer system from
the manufacturer.

Each of these levels provides a complete description of a system, i.e., one
in which the present state of the machine plus the laws of behavior of the system
(at that level) determine the entire trajectory of the system through time.6

Although apparently only a way of describing the physical world, each
level in fact constitutes a technology. That is, any description of a system can be
realized physically, because physical techniques exist for creating the required
components and assembling them according to the description. Circuits of any
description can be built; so also logic circuits, and programs with any data types
and routines. At the PMS level, computer configurations can be ordered with
various combinations of memory boxes, disks, and terminals. And so on. (Limits
do exist to the realizability of arbitrary descriptions, e.g., the number of nested
expressions in a programming language or the fanout in a logic circuit technol-
ogy; these complicate, but do not destroy, the technological character of a level.)
Thus, these levels of description do not exist just in the eye of the beholder, but
have a reality in this combinative characteristic in the real world. The levels are
not arbitrary and cannot be created at will, just by an act of analysis. On the other
hand, there is no persuasive analysis yet that says this particular set of levels is
necessary or unique and could not be replaced by a quite different set.

From the prior discussion of symbol systems we should be prepared for the
existence of an indefinitely wide variety of symbol systems. Such variety stems
from all the different forms of operators, controls, memories, and symbol-

it.
@Ihe top level (PMS) is often an exception, for behavioral laws are not usually formulated for

174 NEWELL

structures that still add up to universal symbolic capability. The logic level
structure that creates a particular symbol system is called the architecture. Thus,
there is an indefinite variety of architectures. Indeed, they are so diverse that we
have no reasonable characterizations of the class of all architectures.

What we had no right to expect is the immense variety of physical ways to
realize any fixed symbol system. What the generations of digital technology have
demonstrated is that an indefinitely wide array of physical phenomena can be
used to develop a digital technology to produce a logical level of essentially
identical character. If evidence must be quoted for this, it comes in the form of
the architecrure family, achieved first by IBM in the mid-sixties with System/360
and now provided by most manufacturers, whereby many implementations exist
for a given architecture, trading cost for speed and memory capacity. Programs
that run on one implementation also run on the other. Furthermore, these im-
plementations are not all planned for in advance, but as brand new technologies
gradually come into existence at the device level, new implementations of the
existing architecture are created.

Thus the picture that emerges is a series of levels of technology, with a
many-many mapping between levels-each level giving rise to an immense
diversity of systems at the next higher level, and each system at a given level
being realizable by an immense diversity of organizations at the next lower level.

That humans are physical symbols systems implies that there exists a
physical architecture that supports that symbol system. The relatively gross facts
about the nervous system reveal some natural candidates for the levels of organi-
zation at which technologies do exist. The neural level surely constitutes a
technology. So also does the macromolecular level (in fact, several technologies
may exist there). It is possible to be mistaken about the levels, given the poten-
tiality at the macromolecular level, as seen, for instance, in the immune system.
But such uncertainty does not destroy the essential picture:

There must exist a neural organization that is an architecmrei.e., that supports a
symbol structure.

Furthermore, the immense diversity of lower level technologies that can lead to
an architecture certainly enhances the chance that a biological based architecture
could have evolved.

This is a genuine prediction on the structure of the nervous system and
should ultimately inform the attempt to understand how the nervous system
functions. It does not appear to have done so, though from time fp time the
suggestion has even been made directly (Newell, 1962). In fact, I know of no
discussion of the issue in the neuroscience literature.

The reasons for this lack of attention by the neurosciences lie beyond the
present paper. Some of the considerations are evident in Geschwind’s paper at
this conference (Geschwind, 1980), where emphasis is placed on the special-
purpose computational systems that seem to be available in the organism, even to

PHYSICAL SYMBOL SYSTEMS 175

doubting that any general purpose mechanisms exist. As the present exposition
should make clear, the requirement for universal symbolic functioning is not
incompatible with extensive special-purpose computational structure. It implies
neither that everything must be done through programming a small set of primi-
tive facilities nor that the symbol system occur as an isolated component. To take
SS (or similar examples of formally defined universal systems) as implying such
properties fails to appreciate the actual functional requirements they express.

The levels structure of physical implementation, and our experience with it
for digital technologies, leads to understanding how one level can be sealed off
from its lower level during normal operation. This is the phenomenon of not
being able to identify under normal conditions the technology in which a com-
puter is implemented, if access is available only to the behavior at the symbolic
level. This sealing off produces an effect in which the symbolic behavior (and
essentially rational behavior) becomes relatively independent of the underlying
technology. Applied to the human organism, this produces a physical basis for
the apparent irrelevance of the neural level to intelligent behavior. The neural
system is not in fact irrelevant-its operation supports the symbolic level. But it
does so in a way that normally hides most of its properties, realizing instead a
symbol system with properties of its own.

The phrase under normal conditions is essential to the above characteriza-
tion. Errors of all sorts that occur at lower levels typically propagate through to
higher levels (here, the symbolic level) and produce behavior that is revealing of
the underlying structures. Likewise, simply forcing a system against the physical
limits of its behavior reveals details of the underlying technologies. Given a stop
watch, the freedom to specify the tasks to be performed on a computer, and a
system that is not designed to deceive, much can be learned of the lower levels of
implementation. Similarly, if the system uses large subsystems of special compu-
tational character, these too may reveal themselves.

This entire story of technological system levels, and the many-many rela-
tionship of systems on the symbol level to architectures that support it, is an
important part of the current knowledge about symbol systems. Like the link to
rational behavior (as expressed in the basic hypothesis), it is primarily empiri-
cally based.

7. DISCUSSION

With the basic story now before us, a few issues can be touched on to make sure
that the notion of symbol system and the hypothesis are correctly understood.

7.1. Knowledge and Representation

Two terms intimately related to symbolic behavior have not appeared in the

176 NEWELL

discussion so far: representation and knowledge. Both have rather clear mean-
ings within the concept of physical symbol system, especially in the practice of
artificial intelligence. However, formal theories of these concepts are relatively
chaotic, with little agreement yet. Still, it is useful to indicate the sense of these
notions, albeit briefly.

Representation is simply another term to refer to a structure that designates:

X represenrs Y if X designates aspects of Y, i.e., if there exist symbol processes that
can take X as input and behave as if they had access to some aspects of Y.

The qualitification to aspects of Y, rather than just Y, simply reflects language
usage in which X can be said to represent a complex object Y without being
faithful (i.e., designating) all aspects of Y.

Representation is sometimes formulated in terms of a mapping from as-
pects of Y to aspects of X. Implicit in this formulation is that something can be
done with X, i.e., that processes exist that can detect the aspects of X that are
images of aspects of Y. Hence the whole forms a designatory chain.

Representation is also sometimes formulated in terms of a data structure
with its associated proper operations. This view emphasizes the coupling of the
static structure (what is often simply called the representation) and the processing
that defines what can be encoded into the structure, what can be retrieved from it
and what transformations it can undergo with defined changes in what is repre-
sented. This view suppresses the function of the memory structure (i.e., what it
represents) in favor of the essential mechanics, but it comes to exactly the same
thing as the formulation in terms of designation.

The term representation focuses attention on the image of the distal object
in the symbolic structure which represents it. The analysis of universality and
symbols, as presented here, focuses on the adequacy of constructing functions
from the distal object to the behavior of the system, which works through the
representations as an intermediate structure. Such a presentation leaves unde-
veloped the structure of descriptive schemes, with the corresponding questions of
efficiency and usefulness. We saw a reason for this in the initial formulation of
universality, where it was important to avoid confounding the limitations of
descriptive schemes for possible functions with what functions could actually be
produced by a machine.

Existing work, mostly stemming from the analysis of formal logic, con-
firms that the class of systems described here (i.e., universal symbol systems) is
also the class of systems with general powers of representation or (equivalently)
description. The representational range of all fist order predicate calculi is the
same and corresponds to universal systems (when one asks what functions can be
described in the logic). An important chapter in logic was the demonstration that
set theory, perhaps the most useful descriptive scheme developed in mathema-
tics, was formulable in first order logic, thus becoming simply another altema-
tive descriptive scheme, not one capable of describing a different range of en-

PHYSICAL SYMBOL SYSTEMS 177

tities and situations. Higher order logics (which progressively remove restrictions
on the domains of variables in logical formula) do not extend the expressive
range. Modal notions, such as possibility and necessity, long handled axiomati-
cally in a way that made their relationship to standard logic (hence universal
symbol systems) obscure, now appear to have an appropriate formulation within
what is called possible world semantics (Hintikka, 1975; Kripke, 1972), which
again brings them back within standard logic. The continuous functions that
naturally occur in the world (hence, must be represented) are produced by sys-
tems of limited energy. Hence, they must be of limited frequency (i.e., limited
bandwidth) and have, by the so-called sampling theorem, adequate finite discrete
representations.

The above rapid transit through some basic theoretical results on repre-
sentation is meant to indicate only two things: First, some general things are
known about representation; and second, representation is intimately tied to
symbol systems. Much more is known in empirical and practical ways about
representation, especially from investigations of artificial intelligence systems.
However, no adequate theory of representation exists for questions of efficiency,
efficacy, and design-the level at which most interesting issues arise.

Knowledge is the other term that has not figured as prominently in our
discussion as might have been expected. It is a competence-like notion whose
nature can be indicated by the slogan formula:

Representation = Knowledge + Access

Given a representation, making use of it requires processing to produce other
symbolic expressions (or behavior). Although it is possible for a symbolic struc-
ture to yield only a small finite number of new expressions, in general there can
be an unbounded number. Consider what can be obtained from a chess position,
or from the axioms of group theory, or from a visual scene. Further, to obtain
most of these new expressions requires varying amounts of processing. Thus, it
is theoretically useful to separate analytically the set of potential expressions that
a representation can yield from the process of extracting them, i.e., the access to
them. Knowledge is this abstract set of all possible derived expressions.

This notion, which corresponds to the set of all implications of a set of
propositions, has a history in philosophy as a candidate for the definition of
knowledge. It has seemed unsatisfactory because a person could hardly be said to
know all the implications of a set of propositions. However, its position within an
explicit processing theory presents quite a different situation. Here, having
knowledge is distinguished from having it available for any particular use, and in
a principled way that depends on the details of the processing system. This
formulation in fact corresponds to the actual use of the term in artificial intelli-
gence, where it is necessary to talk about what is available in a data structure that
could be extracted by more or different processing.

178 NEWELL

7.2. Obstacles to Consideration

The basic results we have been reviewing have been with us for twenty years in
one guise or another. Some attitudes about them have grown up that are obstacles
to their correct interpretation. These are worth mentioning, at least briefly:

The Turing Tar fir. The phrase is Alan Perlis’.’ The view is that all distinctions vanish
when considering systems simply as universal machines (i.e., as Turing machines),
since all systems become equivalent. Therefore, general results about universality
cannot be of interest to any real questions. On the contrary, the question of interest
here is precisely what structure provides flexibility. The discovery that such flexi-
bility requires symbols is a real one. The Turing Tar Pit only traps the unwary who
already live within the world of universal symbol systems, which of course com-
puter scientists do.

The computer us tool kit. The universality of the digital computer means it can be used
to simulate and build models for any system of interest, from chemical processing
plants to baffic control to human cognition. Therefore, its role and significance are
no different for cognitive science than for any other science or engineering. On the
contrary, it is the structure of the digital computer itself (and the theoretical analysis
of it) that reveals the nature of symbolic systems. When the computer, as a general
purpose tool, is used to simulate models of mind, these are models of symbol
systems (though of different architectures than that of the computer being used as
tool).

The requirenzenrfor unbounded memory. Universality implies unbounded memory. All
real systems only have bounded memory. Therefore, the property of universality
cannot be relevant to the understanding of intelligent mechanisms. On the contrary,
as we emphasized earlier, the structural requirements for universality are not depen-
dent on unbounded memory, only whether the absolute maximal class of input-
output functions can be realized. Symbol systems are still required if universality is
demanded over any sufficiently large and diverse class of functions.

The ignoring ofprocessing time. Universality requires no restraint on processing time.
Indeed, simulations nm indefinitely slower than what they simulate. But time and
resource limits are of the essence of intelligent action. Therefore, universality
results are of little interest in understanding intelligence. On the contrary, the
requirement for symbol systems remains with the additon of physical limits, such as
real time (or reliability, sensitivity, .). The objection confuses necessary and
sufficient conditions. The real question is what is the subclass of symbol systems
that also satisfies the real time constraint. This is sufficiently important to the
general argument of this paper that we take it up below in more detail.

The requirement for experimental idenrijication. An experimental science of behavior
can only be concerned with what it can identify by experimental operations. Uni-
versal machines (and various general representations) mimic each other and are
indistinguishable experimentally. Therefore, they are not of interest to psychology.
On the contrary, if humans have this chameleon-like character (which it appears
they do), then it is the basic task of psychology to discover ways to discern it

‘Some readers may be unacquainted with the famous Tar Pits of La Brea, California. which
trapped and sucked down innumerable prehistoric animals without distinction-large and small,
fierce and meek.

PHYSICAL SYMBOL SYSTEMS 179

experimentally, however difficult. Without downplaying these difficulties, the ob-
jection overstates the lack of identifiability in the large (i.e., in the face of suffi-
ciently wide and diverse contexts and varieties of measurement).

The uniform nulure of svrnbol svsre,rzs. General symbol systems imply a homogeneous
set of symbols, in which everything is done by uniform mechanisms. But physiol-
ogy and anatomy show clearly that the nervous system is filled with computational
systems of immense specialization (and evolution affms that this is how it would
be). Therefore, humans (and other animals) cannot have symbol systems. On the
contrary, this objection inducts the wrong attributes from existing computer archi-
tectures. The functional properties we have summarized are what is important.
These can be realized in an immense diversity of schemes, including ones that are
highly parallel and full of special mechanisms.

The discrere natwe of qlmbols. Symbol systems are ultimately just a collection of
bits-of yes’s and no’s. Such a discrete representation cannot possibly do justice to
the nature of phenomenal experience, which is continuous and indefinitely rich. On
the contrary, there is good reason not to trust the intuition about the relation of
phenomenal reality and discreteness. On the side of constructed systems, speech
and vision recognition systems begin to show adequate ways in which continuous
environments can be dealt with. On the side of the human, the discrete cellular
nature of biological systems (and below that of molecular structure) gives pause on
the anatomical side; as does the sampled-data character of the visual system on the
behavioral side. However, nothing to speak of is known about “continuous”
symbol systems, i.e., systems whose symbols have some sort of continuous topol-
ogy.

The computer meruphor. The computer is a metaphor for the mind. Many metaphors are
always possible. In particular, new technologies always provide new ways to view
man. Therefore, this metaphor too will pass, to be replaced by a metaphor from the
next technology. On the contrary, though it is surely possible and sometimes
fruitful to use the computer metaphorically to think about mind, the present de-
velopment is that of a scientific theory of mind, not different in its methodological
characteristics from scientific theories in other sciences. There has been an attempt
in the philosophical literature to take meruphor as a metaphor for all theory and
science (Black, 1962), a view well represented by Lakoff (1980) at this conference.
Like all metaphors, it has its kernel of truth. But the sign is wrong. The more
metaphorical, the less scientific. Again, the more metaphors the better, but the
more comprehensive the theory of a single phenomenon, the better. Compurutionul
meruphor does not seem a happy phrase, except as a rhetorical device to distance
theoretical ideas flowing from the computer and keep them from being taken
seriously as science.

7.3. The Real-Time Constraint

A brief discussion of the constraint that processing occurs in real time may serve
to clarify the role of symbol systems in the total endeavor to understand the
phenomena of mind.

No doubt, living in real time shapes the nature of mind, and in more ways
than we can imagine at present. For instance, it produces the existential dilemma
that gives rise to search as a pervasive feature of all intelligent activity. Limited

180 NEWELL

processing resources per unit time continually must be committed now without
further ado-the opportunity to spend rhis now already slipping past. Imper-
fect present knowledge always produces imperfect commitments, which leads
to (still imperfect) corrective action, which cascades to produce combinatorial
search.

As noted earlier, such considerations do not remove the need for symbols.
Intelligent activity in real time cannot be purchased by foregoing symbols.
Rather, those symbol systems that can perform adequately in real time become
the focus of interest in the search for a theory of mind. How would one seek to
discover such a class? One way-though only one-is to work within the class of
symbol systems to find architectures and algorithms that are responsive to the
constraints of real time.

An example is the intensive explorations into the nature of multiprocessing
systems. This is being fueled much more generally by computer science inter-
ests, driven by the advances in technology which provide increasingly less ex-
pensive processing power. The range of such explorations is extremely broad,
currently, and much of it appears remote from the interests of cognitive science.
All of it assumes that the total systems will be general purpose computers (though
with interesting twists of efficiency and specialization). It will add up eventually
to a thorough understanding of the space, time, and organization trade-offs that
characterize computers that operate under severe time constraints.

Another example, somewhat closer to home, are the so called production
systems (Waterman & Hayes-Roth, 1978), which consist of a (possibly very
large) set of condition-action rules, with continuous parallel recognition of which
rules are satisfied in the present environment and selection of one (or a few) of
the satisfied rules for action execution. There are several reasons for being
interested in such systems (Newell, 1973; Newell, 1979). However, a prime one
is that they are responsive to the real-time constraint. The parallel recognition
brings to bear, at least potentially, all of the knowledge in the system on the
present moment when a decision must be made. Such systems are also universal
symbol systems. They would have done as well as SS for illustrating the nature
of symbols, save for the confusion engendered by their also exhibiting aspects
responsive to other constraints.

The point of both examples (and others that could have been given) is not
the particular contributions they might make individually. Rather, they illustrate
the ability to explore classes of systems that are responsive to additional con-
straints by developing subclasses of architectures within the class of universal
symbol systems. That the space of all universal symbol systems contains vast
regions of systems inappropriate to some of the other conditions of mind-like
systems is irrelevant. More precisely, it is irrelevant if the larger class is a
suitable base for further analysis and exploration-which is exactly what current
experience in computer science attests.

PHYSICAL SYMBOL SYSTEMS 181

8. CONCLUSION

Let us return to our general problem of discovering the nature of mind, and the
decomposition of that problem into a dozen constraints (Figure 1). We now have
a class of systems that embodies two of the constraints: universality and symbolic
behavior. Furthermore, this is a generative class. It is possible to construct
systems which are automatically within the class. Thus this class can be used to
explore systems that satisfy yet other constraints. Indeed, that is exactly the
twenty-five-year history of artificial intelligence-an explosion of exploration,
all operating from within the class of systems that were automatically universal
and symbolic. The generative character comes through clearly in this history as
the initial versions of digital computers were shaped via the development of
list-processing to also bring their general symbolic character to the fore.

This class of universal-symbolic systems is now tied to a third constraint,
rationality. That is what the Physical Symbol System Hypothesis says. Unfortu-
nately, the nature of rational action is not yet well enough understood to yield
general generative formulations, to permit exploring other constraints within a
constructive framework that automatically satisfies the rationality constraint (as
well as the universality and symbolic behavior constraints). Major attempts in
artificial intelligence still start from basic symbolic capability and posit their own
idiosyncratic processing organization for attaining rational behavior. However,
some parts of the puzzle are already clear, such as the notion of goal and goal
hierarchies, and the concept of heuristic (i.e., knowledge controlled) search.
Thus, we may not be too far away from the emergence of an accepted generative
class of systems that are universal-symbol and also rational. The excitement that
rippled through the artificial intelligence world at the beginning of the seventies
when the so-called planning languages first came on the scene (Hewitt, 1971;
Rulifson, Derksen, & Waldinger, 1972) stemmed in large part because it seemed
that this step had been taken. We didn’t quite make it then, but experience keeps
accumulating.

This phenomenon continues: Discovering that it is possible to shape new
subclasses that satisfy additional constraints on our list. We discussed briefly the
real-time constraint. We did not discuss, but could have, progress with respect to
a few of the other constraints (though by no means all), e.g., linguistics or vast
knowledge-not just general progress, but progress in shaping a generative class
of systems that automatically by construction satisfies the constraint.

I end by emphasizing this evolution of generative classes of systems that
satisfy successively more constraints in our list, because it can stand as a final bit
of evidence that we are on the right track-that symbol systems provide us with
the laws of qualitative structure within which we should be working to make
fundamental progress on the problem of mind. It is one more sign, coupled with

182 NEWELL

the rich web of concepts illustrated in the prior pages, of the scientific fruitful-
ness of the notion of a physical symbol system.

Francis Crick, in his Danz lectures Of Molecules and Men, discusses the
problem of how life could have arisen:

[This] really is the major problem in biology. How did this complexity arise?

The great news is that we know the answer to this question, at least in outline. 1 call it
news because it is regrettably possible in very many parts of the world to spend three
years at a university and take a university degree and still be largely ignorant of the
answer to this, our most fundamental problem. The answer was given over a hundred
years ago by Charles Darwin and also by A. R. Wallace. Natural selection, Darwin
argued, provides an “automatic” mechanism by which a complex organism can
survive and increase in both number and complexity. (1966, p. 7)

For us in Cognitive Science, the major problem is how it is possible for
mind to exist in this physical universe. The great news, I say, is that we know, at
least in outline, how this might be. I call it news because, though the answer
has been with us for over twenty years, it seems to be not to be widely recog-
nized. True, the answer was discovered indirectly while developing a technolog-
ical instrument; and key steps in its evolution occurred while pursuing other
scientific goals. Still, there remains no reason not to face this discovery, which
has happened to us collectively.

REFERENCES

Allpott, D. A. Conscious and unconscious cognition: A computational metaphor for the mechanism
of attention and integration. In Nilsson, L. G. (Ed.), Perspecfives on Memory Research,
Hillsdale, N.J.: Erlbaum. 1979.

Ashby, W. R. Inrroducrion IO cybernetics. New York: Wiley, 1.956.
Black, M. Metaphors and models. Ithaca, NY: Cornell University, 1962.
Brainerd, W. S., & Landweber. L. H. Theory of compurarion. New York: Wiley, 1974.
Church, A. An unsolvable problem of elementary number theory. The American Journal of

Marhemnrics, 1936.58, 345-363.
Clark, H., & Clark, E. The Psychology of language: An introduction IO psycholinguistics. New York:

Harcourt. Brace, Jovanovich, 1977.
Crick, F. Of molecules and men. Seattle, WA: University of Washington Press, 1966.
Feynman, R. P.. Leighton, R. B., & Sands, M. The Feynman lecrares in physics. New York:

Addison Wesley, 1963.
Geschwind, N. Neurological knowledge and complex behaviors. In Norman, D. A. (Ed.), La Jolla

Conference on Cognirive Science, Program in Cognitive Science, UCSD, 1979.
Hewitt, C. Description and Theoretical Analysis (using Schemata) of Planner: A language for

proving rheorems and manipulating models in a robot. PhD thesis, MIT, January. 197 1.
Hintikka, J. The Inrenrions of inremionality and other new models for modality. Dordrecht, Holland:

Reidel. 1975.
Hopcroft, J. E., & Ullman, J. D. Formal languages and their relarion to aatomala. Reading, MA:

Addison-Wesley, 1969.
Kripke, S. Semantical analysis of modal logic II. In Addision. J. W., Henkin, L. & Tarski, A. (Ed.),

The Theory of Models. Amsterdam: North Holland, 1972.

PHYSICAL SYMBOL SYSTEMS 183

Lachman. R., Lachman. J. L., & Butterfield, E. C. Cognirive psychology and informotion process-
ing: An introduction. Hillsdale, NJ: Erlbaum, 1979.

Lakoff, G. Toward an experientialist philosophy: The case from literal metaphor. In Norman, D. A.
(Ed.). Lu Jolla Conference on Cognitive Science. Program in Cognitive Science, UCSD.
1979.

Lindsay, P. H., & Norman, D. A. Human information processing: An introduction to psychology.
2nd Ed. New York: Academic, 1977.

Minsky, M. Compurarion:jinite and infinite machines. Englewood Cliffs, NJ: Prentice-Hall. 1967.
Neisser, U. Cognition ahd reality. San Francisco: Freeman, 1976.
Newell, A. Discussion of the session on integration in information in the nervous system. In Proceed-

ings of the International Union of Physiological Sciences, III. International Union of
Physiological Sciences, 1962.

Newell, A. Production systems: Models of control structures. In W. C. Chase, (Ed.), Visual informa-
tion processing, New York: Academic, 1973.

Newell, A. Harpy, production systems and human cognition. In R. Cole, (Ed.), Perception and
Production of Fluenr Speech, Hillsdale, N.J.: Erlbaum, 1980.

Newell, A.. & Simon, H. A. Human problem solving. Englewood Cliffs, NJ: Prentice-Hall, 1972.
Newell, A. & Simon. H. A. Computer science as empirical inquiry: Symbols and search. Communi-

cations of the ACM, 1976. 19(3), 113-126.
Nilsson, N. Principles of artificial intelligence. Palo Alto, CA: Tioga. 1980.
Palmer, S. E. Fundamental aspects of cognitive representation. In Rosch, E. & Lloyd, B. B. (Ed,),

Cognition and Categorization. Hillsdale, N.J.: Erlbaum, 1978.
Rulifson, J. F., Derksen, J. A.; & Waldinger, R. J. QA4; A procedural calculus for inruirive

reasoning. Technical Report 73, Artificial Intelligence Center, Stanford Research Institute,
1972.

Rumelhart. D. E. Introducrion to human information processing. New York: Wiley, 1977.
Waterman, D. A., & Hayes-Roth, F. (Eds.). Pattern directed inference systems. New York:

Academic, 1978.
Whitehead. Symbolism: Ifs meaning and effecr. New York: Macmillan, 1927.
Wilson, E. 0. Sociobiology: The new synthesis. Cambridge, MA: Harvard University Press, 1975.
Winston, P. Arfificial inrelligence. Reading, MA: Addison-Wesley, 1977.
Yovits, M. C. & Cameron, S. (Eds.). Selforganizing qsrems. New York: Pergamon, 1960.
Yovits, M. C., Jacobi, G. T.. & Goldstein, G. D. (E!ds.). Selforganizing systems 1962. Washington,

DC: Spartan, 1962.

