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Abstract When using visualization tools to perform complex cognitive activities,
such as sense-making, analytical reasoning, and learning, human users and visu-
alization tools form a joint cognitive system. Through processing and transfer of
information within and among the components of this system, complex problems are
solved, complex decisions are made, and complex cognitive processes emerge—all
in a manner that would not be easily performable by the human or the visualization
tool alone. Although researchers have recognized this, no systematic treatment of
how to best distribute the information-processing load during the performance of
complex cognitive activities is available in the existing literature. While previous
research has identified some relevant principles that shed light on this issue, the
pertinent research findings are not integrated into coherent models and frameworks,
and are scattered across many disciplines, such as cognitive psychology, educational
psychology, information visualization, data analytics, and computer science. This
chapter provides an initial examination of this issue by identifying and discussing
some key concerns, integrating some fundamental concepts, and highlighting
some current research gaps that require future study. The issues examined in this
chapter are of importance to many domains, including visual analytics, data and
information visualization, human-information interaction, educational and cognitive
technologies, and human-computer interaction design. The approach taken in this
chapter is human-centered, focusing on the distribution of information processing
with the ultimate purpose of supporting the complex cognitive activities of human
users of visualization tools.
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1 Introduction

The use of visualization tools (VTs) is on the rise in many spheres of human
activity. Such tools are increasingly being used in the areas of insurance, education,
science, finance, public health, emergency management, journalism, business, and
others (see, e.g., [23, 32, 56, 57, 64]). In this chapter, a VT is an electronic
computational tool that visually represents (i.e., encodes and visualizes) data and/or
information at its visually perceptible interface to help human users1 analyze
data, solve problems, make decisions, and perform other such complex cognitive
activities. Therefore, visualizations—whether simple or complex—that do not have
an electronic, computational component that allows them to be interactive, and
to potentially perform computational and analytic operations, are not considered
VTs. Examples of visualizations that are not considered VTs are info-graphics
and other static information representations. Furthermore, this chapter is concerned
with VTs that support the performance of complex cognitive activities—activities
that involve higher-order cognitive processes and occur under complex conditions.
Examples of complex cognitive activities are problem solving, sense-making,
learning, decision making, and analytical reasoning. VTs have been referred to in the
literature by different names, including, but not limited to, cognitive activity support
tools, decision support tools, knowledge discovery tools, visual analytics tools,
educational tools, and cognitive tools and technologies. This chapter is concerned
with all such tools, and does not confine itself to discussion of tools in only one
domain. Therefore, any tool—whether used in the context of science, business,
insurance, education, libraries, or journalism—that is electronic, computational,
and encodes and displays data and/or information in visual forms at its visually
perceptible interface is considered a VT.

When using VTs to support the performance of complex cognitive activities,
users and VTs are coupled together to form a joint cognitive system [53, 55].
Because of this, information processing that is required to perform complex
cognitive activities is distributed across the components of the human-VT system.
Moreover, unlike static information-based tools, VTs can take on an active role in
the processing of information. For example, VTs can perform data analysis and
engage in data mining and knowledge discovery, and can store, manipulate, and
encode data in numerous forms. However, as this is a relatively young research area,
we still have very little understanding of how to best distribute the information-
processing load during the performance of different complex cognitive activities.
For example, consider an emergency manager performing time-critical risk and
impact analysis of a pending natural disaster. Consider also a university student
learning about subatomic particle interactions as part of an undergraduate course. In
both cases, a VT could greatly benefit the performance of the activity; however,
the ideal distribution of information-processing load in each case would almost

1In this chapter, the terms human and user are used interchangeably.
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certainly be much different. In the latter case, the user would benefit from being
required to take on much of the information processing—that is, being required
to engage in deep and effortful mental processing of the information to develop
sophisticated mental models of the phenomena. In the former case, however, the user
would likely benefit most from having the VT shoulder much of the information-
processing load, through data analysis and other computational processes, to simply
communicate the result for quick decision making. This chapter will more fully
explicate the underlying issue, describe some of the features that affect the ideal
distribution of information processing, and provide some high-level suggestions as
to how information-processing may be best distributed in different contexts.

As this handbook is concerned with human-centric visualization, this chapter
assumes a human-centric perspective on information processing in complex cogni-
tive activities. While computational agents may communicate and work together to
analyze data, make decisions, and so on, we are interested in joint cognitive systems
that have a human core. In such systems, although some information processing
may not be taken on by the human, the human is an essential component of the
system, and often has the majority of control in the performance of the activity.
Moreover, the goal of using VTs is usually to ultimately alter the mental state of the
human user. In other words, the performance of an activity results in some change in
the user’s knowledge, understanding, worldview, schemas, mental models, or other
forms of internal, mental representation.

The structure of this chapter is as follows: Sect. 2 will discuss some neces-
sary background concepts and terminology, including distributed cognition and
interactive coupling, complex cognitive activities, information processing and
human-information interaction, and types and functions of VTs. Section 3 will
examine previous work that has categorized the human-VT system into five
spaces—information, computing, representation, interaction, and mental space—
and will discuss how information is processed in each of the spaces. Section 4 will
identify some of the factors that contribute to the ideal distribution of information
processing, including activities, information spaces, users, and VTs, and will include
a discussion of how researchers and designers can think about the distribution of
information processing according to each of these factors. Finally, Sect. 5 will
summarize the ideas discussed in the chapter.

2 Background

This section will examine some necessary background concepts and terminology.
Four main issues will be briefly examined: (1) distributed cognition and interactive
coupling, (2) complex cognitive activities, (3) information processing and human-
information interaction, and (4) types and functions of VTs.
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2.1 Distributed Cognition and Interactive Coupling

Until recently, the unit of analysis for human cognition—i.e., that which was con-
sidered the necessary scope of study to understand human cognition—was typically
limited to internal mental structures and processes. Recent research in the cognitive
sciences, however, has led scholars to posit that the unit of analysis should be
extended to include the body, the external environment, and interactions with objects
(e.g., people, artifacts) within the external environment. Numerous subdomains and
areas of interest have emerged from this consequential and far-reaching revision
in our understanding of human cognition, each emphasizing different aspects of
cognition and using slightly different terminology—e.g., suggesting that cognition
is embodied, extended, embedded, distributed, and/or situated (see [4, 8, 21, 31,
48]). Whatever the preferred terminology, these recent perspectives all characterize
human cognition as an emergent feature of interactions among the internal mental
space, the rest of the body, and the external environment and its objects and
processes.

One of the better-known theories to emerge from the shifting landscape in
cognitive science research is known as the theory of distributed cognition. This
theory proposes that cognitive processes are distributed across the internal mental
space and the external environment. Hollan et al. [19] posit that this distribution
occurs in three main ways: socially, temporally, and across internal (mental)
representations and external representations of information. In order to perform
complex cognitive activities, such as those performed with the support of VTs,
one often combines and processes information from both internal and external
representations, in an integrative and dynamic manner [68].

These new perspectives on cognition are not simply changes in terminology;
rather, they effect changes in the methodology of cognitive science research and in
the explanatory methods of human cognition [8]. Thus, there are vast implications
for how we conceptualize the use of VTs for performing complex cognitive
activities. Not only do VTs help with memory offloading and computation; they
are also integral components of a joint cognitive system, and fundamentally shape
and alter cognitive processes [33, 52, 53]. Kirsh [25] suggests that a key tenet of
distributed cognition is that of coordination—that the user-VT relation is dynamic,
involving reciprocal action and harmonious interaction. That is, the key interactive
relation between the user and VT has to do with coordination rather than control. In
other words, there is a partnership between a user and VT that results in reciprocal
causal influence. This notion of computational technologies acting as partners in
cognition has been around for some time now. For instance, based on the theory
of distributed cognition, Salomon and colleagues [48, 50] emphasized the idea of
thinking with computers two decades ago (see [49] for a more recent discussion
of the issue). While such ideas have been discussed in the field of education and
psychology for some time, visualization researchers have been slow to catch up.

When two entities reciprocally interact—i.e., changes in one cause changes
in the other—and the state trajectory of one is dependent on the state trajectory
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of the other, the two entities are considered to be closely coupled [26]. In the
context of a user-VT system, there is reciprocal interaction and mutual causal
influence between the user and the VT. Furthermore, since cognitive processes
are intrinsically temporal and dynamic, interactive VTs can create a harmony and
a close temporal coupling with cognitive processes [4, 24, 25, 53]. This close
and interactive coupling is significant, as the user and the VT each have a causal
influence on one another (see [7, 52]). Due to their emergent nature, the performance
of any complex cognitive activity is fundamentally affected by the characteristics of
both the user and the VT, as well as the strength of the coupling between them
(see [55] for a discussion of what contributes to the strength of this coupling).
Therefore, to study the performance of complex cognitive activities with VTs, the
unit of analysis must be the user-VT system.

While computers may communicate and work together to analyze data, make
decisions, and so on, we are interested in joint cognitive systems that have a human
core. In user-VT systems, although the user does not do all of the information
processing, he or she is an essential component of the system. Moreover, the goal
of using VTs is usually to alter the mental state of the user and to help carry
out complex cognitive activities. This primary focus on mental state changes is a
fundamental aspect of all human-centric informatics research (see Sect. 2.3).

2.2 Complex Cognitive Activities

Cognitive scientists make a distinction between complex cognition and simple
cognition. Whereas simple cognition refers to elementary cognitive and perceptual
processes, complex cognition refers to high-level, emergent cognitive processes,
such as decision making and problem solving, that take place in complex envi-
ronments and/or under complex conditions [30, 51, 63]. To emphasize the active
aspect of such cognitive processes, and to emphasize their complex nature, they
can be referred to as complex cognitive activities (see, e.g., [12]). Although there
are numerous complex cognitive activities that can be performed, some of the
more common ones are decision making, problem solving, planning, analyzing,
forecasting, reasoning, learning, and sense-making [53]. Section 4.1 will elaborate
on some of some of these.

2.3 Information Processing and Human-Information
Interaction

Complex cognitive activities involve the engagement of human beings in goal-
directed information processing [15, 30, 63]. What is meant by the term ‘infor-
mation processing’, however, varies according to the context and domain in which
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it is used. Moreover, such a definition also depends on the definition of information
itself, which also varies according to the domain and context. We adopt Bates’
[1] definition of information as the pattern of organization of matter and energy.
Information processing, then, has to do with changes in the organization of matter
and energy. In the context of this chapter, however, the concern is more specific—
information processing refers to any change in a mental or physical state (i.e.,
organization) of the user-VT system. Just as physical state changes provide the
basis for classical information theory, it is the focus on mental state changes
that characterizes human-centric informatics [35]. Thus, although information
processing done by VTs can by analyzed through the lens of classical information
theory, because the approach here is human-centric, and because VTs necessarily
involve human users, information-processing that results in at least some mental-
state changes in a human user is the focus of this chapter.

It should be noted that there is debate that crosses multiple disciplines including
cognitive science, artificial intelligence, and philosophy of mind, regarding the
information-processing theory of cognition. Much of the disagreement that exists
seems to be with the way that ‘information’ and ‘information processing’ are defined
(see [5]). In this chapter, however, we are not endorsing any particular take on
this issue, nor are we concerned with technical definitions in these different fields.
Regardless of the adopted theory and terminology, in accordance with the definitions
given above, users and VTs share the load of the requisite information processing
during the performance of complex cognitive activities.

2.4 Types and Functions of VTs

As mentioned previously, VTs have the following necessary characteristics: they
are electronic, computational, and encode and display data and/or information in
the form of visual representations (VRs) at their visually perceptible interface. As
this characterization is general, there is a broad range of VTs, with varying functions
and levels of sophistication, to which the ideas in this chapter are applicable. Some
VTs have tremendous computing power (e.g., those that are connected to distributed
computer networks), while others have comparatively little power (e.g., some tablet
computers). This dictates their ability to perform complex computational analysis,
and thus, also determines their potential functions. For instance, a tablet-based VT
cannot (as of now) be used to sequence the human genome and display VRs to
offer a visual data-mining component for further genome analysis. However, such
a VT can support doctors in their decision making by performing simple analysis
on patient data and displaying and inviting actions upon VRs. Depending on the
context of use, some VTs do not need to perform much computational analysis, and
simply need to display VRs and respond to actions from the user (see Sect. 4.4).
In addition, VTs offer all kinds of different possibilities for interaction with the
underlying information. Some invite the performance of only one or two interactions
(e.g., selecting, filtering), whereas others offer many (see [53] for more discussion of
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this issue). Another consideration still is the types of interactions that are performed.
These range from allowing the user to only access existing information, to annotate
it (i.e., add a layer of personal meta-information), to modify properties of the
existing information, to insert completely new information into the VT, or any
combination thereof. Still another dimension in which VTs differ is the degree to
which a VT takes a proactive role in information processing. VTs can simply wait
for user input before responding, can engage in computational processing in the
background, or can actively prompt the user with some information that the VT
deems to be appropriate.

Aside from their processing power, storage, and other such characteristics,
VTs are also used in a wide variety of domains. For instance, VTs can be used
in educational, financial, scientific, journalistic, insurance, emergency response,
healthcare, national defense, and many other settings. Thus, the necessary demands
of each domain require VTs with different characteristics; however, this chapter is
relevant across all domains in which VTs are used to support the performance of
complex cognitive activities.

3 Structure of the Human-VT Cognitive System

In order to discuss the distribution of information processing in a human-VT system,
there must be a clear division of the different components of the system. Although
there is necessary overlap, each component must have a clear function. In previous
work, the authors have categorized the human-VT system into five spaces: (1)
information space, (2) computing space, (3) representation space, (4) interaction
space, and (5) mental space. Information space refers to the body of information
with which users interact while performing complex cognitive activities. Computing
space is concerned with encoding and storing internal representations of items from
an information space and performing operations upon them. Representation space
is concerned with encoding and displaying VRs of information so as to be visually
perceptible to the user. Interaction space is where actions are performed and con-
sequent reactions occur. Finally, mental space refers to the space in which internal
mental events and operations take place (e.g., apprehension, induction, deduction,
memory encoding, memory storage, memory retrieval, judgment, classification,
categorization). Readers are referred to [54] for a more detailed discussion of these
different spaces. Figure 1 depicts this categorization of the human-VT cognitive
system.

According to this categorization, the information processing that occurs in each
space can be examined in relative isolation. The following three subsections will
examine information processing in (1) mental space, (2) computing space, and
(3) representation and interaction space. Because of the necessary dependence that
exists between interaction and representation space (i.e., actions are performed on
VRs, reactions are perceived from changes in VRs), we have chosen to examine
them together. However, for other purposes, such as interaction design and represen-



700 P. Parsons and K. Sedig

Fig. 1 Categorization of the human-VT cognitive system into five spaces

tation design, it can be important to examine these two spaces independently [53].
Although information processing occurs in all dynamic information spaces (e.g.,
genetic mutation, social interaction, and financial trading all involve information
processing), it is not necessary to examine in light of the goals of this chapter—
namely, to examine the distribution of information processing in a user-VT system.
It should be noted that decomposing the user-VT system to examine information
processing in each of these spaces is useful as an analytical, conceptual tool to
facilitate systematic thinking about this issue. In practice, information processing
often occurs simultaneously, and in an interdependent manner, in each of these dif-
ferent spaces. Therefore, analyzing the distribution of information processing in this
manner serves primarily to assist researchers and designers with conceptualization,
rather than to offer prescriptive design guidelines.

3.1 Information Processing in Mental Space

Information processing in mental space consists of changes in the mental state
of a user. Changes in one’s mental state can take place by working with only
internal, mental representations, or by acting upon external representations—i.e.,
VRs—to co-ordinate and adjust internal mental representations (see [11, 14, 27,
53]). When information processing in mental space involves working with external
representations, such as VRs, perception—i.e., awareness of and interpretation
of external stimuli—becomes part of the information processing. This perceptual
processing of information is a bridge between the internal mental space of the user
and the external world. Therefore, the manner in which information is processed by
the human perceptual system is an important consideration for research, design,
and evaluation of any VT. Figure 2 depicts the different stages of information
processing in mental space. The earliest stage of the process can be referred to
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Fig. 2 Information processing in mental space

as pre-attentive processing (also called early vision by some scientists). Although
there is considerable debate regarding the boundary of vision and cognition, and
the degree to which pre-attentive processing is influenced by cognition (see [20,
43]), pre-attentive processing is typically considered to operate largely independent
of conscious cognitive processing and prior knowledge. Therefore, some universal
principles of pre-attentive processing can be identified. These are very important for
the effective design of VTs—especially for the design of VRs—as some of the fea-
tures of pre-attentive processing can be exploited with proper visualization design.
For example, our visual systems pre-attentively process many features within our
visual field in less than 250 milliseconds without requiring any conscious cognitive
effort [17]. Such features include length, orientation, width, hue, curvature, and
intersection, among others (see [17]). The second stage of information processing
in mental space is the stage of selective attention, where attention is concentrated
to a specific area in the visual field. This stage can generally be considered as the
bridge between perception and cognition [44]. In the context of most visualization
research, the first two stages are typically considered as being part of perception.
Researchers have identified many principles and guidelines for VR design that are
in accordance with the first two stages of processing (e.g., see [9, 34, 38, 65]).

The third stage involves conscious and deliberate information processing to
adjust, add to, create, or remove mental representations, models, and/or schemas.
In this stage, users consciously perform tasks such as generating hypotheses,
comparing them to existing mental structures, constructing analogies, chaining
items of information together through inference, categorizing information items,
and many others. This is also where metacognitive awareness and regulation
take place. That is, one plans cognitive tasks, monitors the performance of such
tasks, and evaluates the outcomes of such tasks. Although many visualization
researchers have suggested a need for deeper understanding of cognitive—rather
than just perceptual—issues in VT use (see [13, 16, 33, 37, 64]), many visualization
researchers still consider only the first two stages in their research (see [40] for more
discussion). As a result, there is a lack of research in the visualization literature that
deals with information processing in mental space in a comprehensive manner.
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Fig. 3 Information processing in computing space

3.2 Information Processing in Computing Space

Information processing in computing space is concerned primarily with encoding
data and other information items into data representations, performing operations
upon such representations, and organizing and storing such representations.2 The
ability to computationally process information makes VTs much more powerful
mediators of human thinking than static media. Indeed, the speed and precision
of information processing in computing space allows VTs to perform all kinds of
information processing tasks that would be difficult or impossible for a human user
to perform. Figure 3 depicts the stages of information processing in computing
space. Although there is no commonly agreed upon set or number of steps, and
the labeling changes according to the domain and application of use, a number of
potentially present stages can be identified. Depending on the VT, certain stages
may not be present or may be skipped during some portion of an activity.

First, information comes from an information space and is input into the VT—
this information can come from many sources: textual sources such as e-mails,
web pages, and other documents; databases; images and videos; and sensors, such
as gyroscopes, altimeters, particle detectors, barometers, and others. Incoming
information must often first be pre-processed. Depending on the context, pre-
processing can include sub-processes such as cleaning, filtering, fusion, integration,
normalization, and others. In other words, this stage processes the information
so that it is consistent; free from errors, missing values, and duplicates; and
so that both the VT and the user can further process it in a meaningful way.
Statistical and mathematical procedures, such as data transformations, also take
place within computing space (the transformation stage is sometimes considered
as part of the pre-processing stage and not as its own stage). In the most basic
sense, data transformations are computational procedures that convert between
data representations. These data transformations serve multiple functions. First,

2Representations in computing space (i.e., data representations) are not visually perceptible to
users and should not be confused with visual representations in representation space.
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data transformations can create new, derived information from the existing data.
In this sense, data transformations create a new subspace of information that is
derived from the information space. Second, data transformations can convert data
into representational forms that are best suited for encoding in VRs. Third, data
transformations can result in representations that are better suited to a user’s tasks
(for more discussion of data representations and transformations in the context of
visualization see [22]). The third step of information processing in computing space
involves processing information to discover meaningful patterns—also known as
data mining. This stage often involves the performance of computational tasks
such as classification, clustering, regression, and anomaly detection. Finally, if the
data-mining stage does occur, it is often necessary to check whether the patterns
discovered by the data mining algorithms are valid. If there are training samples to
facilitate the data-mining step, for example, there may be over-fitting of the model.

Aside from the typical challenges of information processing in computing
space, due to the influx of information in all domains, the increase in computing
power, and the increasing demand for analytics, new challenges are emerging. For
example, incoming information is often heterogeneous, presenting many challenges
for existing relational database systems, computational algorithms, and other well-
established architectures and techniques (see [23, 66, 67] for more discussion of
these issues).

As computing space is only one component of the user-VT system, it receives
from and transmits information to other spaces—namely, representation space and
interaction space. An additional step of information processing, which bridges
computing space and representation space, is the encoding of information in visually
perceptible forms (i.e., VRs) for the user to perceive and act upon. This space also
receives information from the user in the form of actions. Actions performed by
the user can influence and/or be components of any of the stages of information
processing in this space (e.g., as in interactive visual data mining).

3.3 Information Processing in Representation
and Interaction Space

Because information stored in computing space is not directly accessible to users,
and because the form in which information is represented in computing space is
not meaningful to humans, VTs encode information from computing space into
meaningful visual forms in representation space. These visual forms (i.e., VRs)
are the primary means through which users access, work with, and interpret the
underlying information. Examples of common VRs are geo-spatial maps, network
diagrams, natural and formal languages, treemaps, glyphs, and Venn diagrams.
Cognitive scientists have studied VRs for many years, and have discovered nu-
merous benefits that VRs provide for our thinking and reasoning processes (see,
e.g., [27]). Furthermore, because VTs inherently have interactive potential, VRs
can be made malleable, providing numerous benefits to the user for performing
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complex cognitive activities [53]. The back-and-forth flow of information that
occurs in these two spaces is critical to human-information discourse. Information
processing occurs at the boundary of computing space and representation space,
where information is encoded into VRs. This information is then perceptually
detected by the user and further processed in mental space. Information processing
in these spaces also occurs when users input information by performing actions, and
VRs are removed, created, or modified in the representation space.

As was mentioned in Sect. 2.4, VTs vary in terms of how pro-active they are
in their information processing. One underexplored area of research is to what
degree VTs should shoulder the information-processing load in the context of a
single interaction that is taking place. For instance, if the user wishes to perform an
annotating action, the VT can be completely passive, requiring the user to perform
all of the work, or can be active, making suggestions or performing automatic
annotations based on the user’s action history.

One of the challenges for researchers and designers of VTs is knowing what
interactive possibilities can and should be made available to users, and how such
interactions impact cognitive and perceptual processes during the performance of
complex cognitive activities [64]. Sedig and Parsons [53] have recently developed
a framework to address this challenge. The framework includes a comprehensive
catalog of fundamental action patterns that users perform when engaged in complex
cognitive activities. While each of these actions necessarily impacts information
processing in different ways, another important factor to consider is the manner
in which interactions are operationalized. Different ways of operationalizing the
action and reaction component of an interaction have different cognitive effects, and
ultimately influence information processing throughout the human-VT system in
different ways. Another chapter of this book (see [55]) presents a framework dealing
with macro- and micro-level interactivity considerations for visualization tools—
where interactivity refers to the quality of interaction between a user and a VT.
As part of the framework, 12 micro-level interactivity elements, which collectively
give structure to an individual interaction, are identified and characterized. Each
element has different operational forms, and each is identified and briefly discussed.
As any individual interaction is composed of an action and a reaction component,
some of the elements pertain to the action component and some pertain to the
reaction component. The operationalization of each of these elements constitutes
part of the information processing that occurs in these two spaces. For instance, one
element that is present in both action and reaction is flow. Flow is concerned with
how an action or reaction is parsed in time. Flow has two operational forms: discrete
and continuous. If flow is discrete, the action or reaction occurs instantaneously
and/or is punctuated. If flow is continuous, the action or reaction occurs over a
span of time in a fluid manner. The manner in which flow is operationalized affects
information processing in representation space and interaction space (see [55] for
further detail), and has been shown to have a significant impact on the performance
of complex cognitive activities (see Sect. 4.5 for some discussion of this issue).
Figure 4 depicts some of these aforementioned aspects of information processing in
interaction and representation space.
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Fig. 4 Information processing in interaction and representation space

4 Factors Affecting the Ideal Distribution
of Information Processing

No systematic treatment of how to best distribute the information-processing load
during the performance of complex cognitive activities is available in the existing
literature. Although some previous research has identified some relevant principles
and guidelines, the relevant information is not integrated and is scattered across
many disciplines, such as cognitive psychology, educational psychology, informa-
tion visualization, data analytics, and computer science. Because of the highly
variable nature of VTs and complex cognitive activities, any ideal prescription
on this matter is very much activity-, user-, and VT-dependent. For example,
an intelligence analyst making time-critical decisions, a scientist making sense
of research collections over a long period of time, and a student learning about
biological processes, would each benefit from different distributions of the requisite
information-processing load. To get a sense of the factors that contribute to this
ideal distribution, we examine four interrelated considerations on which the ideal
distribution is dependent: (1) activities, (2) users, (3) information spaces, and (4)
visualization tools. Following the examination of each of these considerations, we
will discuss some of the implications for the distribution of information processing.

4.1 Activity-Dependent

Although there are overlaps among different complex cognitive activities, and ac-
tivities are often embedded within one another during the performance of an overall
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activity, it is still beneficial to identify their individual characteristics (see also
[53]). Depending on the activity that is being performed, information processing
should be distributed differently. Having an idea of the characteristics of an activity
can help with research and design decisions. Moreover, since activities are often
embedded within one another as sub-activities, having a clear conceptualization
of each sub-activity can allow the information processing to be best distributed
for a particular stage of an overall activity. Although many different activities
with distinguishing features can be identified, in what follows, we examine only
three activities: sense-making, analytical reasoning, and learning. As this chapter
is mostly a preliminary examination, future work is needed to more fully explicate
different complex cognitive activities, particularly in the context of VTs.

4.1.1 Sense-Making

Sense-making is a term that has often been used in a somewhat nebulous manner. In
an attempt to clarify its meaning, Klein et al. [28] briefly examine five common
concepts through which sense-making can be primarily understood: creativity,
curiosity, comprehension, mental modeling, and situation awareness. Although each
of these can be considered as facets of sense-making, they suggest that modern
researchers typically mean something more than just these. They then posit that
the additional characteristics that are implicit in the modern use of the term sense-
making are “motivated, continuous effort to understand connections : : : in order
to anticipate their trajectories and act effectively” (p. 71, italics added). In a
companion paper [29], they attempt to explicate the process of sense-making,
suggesting that it begins with some mental model—how-ever minimal—that in-
volves tasks such as elaborating on the model by adding to it, questioning the
model and its assumptions, rejecting the model and replacing it, and comparing
different models. They posit that the sense-making process involves a closed-loop
transition sequence between mental model formation and mental simulation. In
response to Klein et al.’s approach to sense-making, Blandford et al. [2] suggest
that not enough attention is given to the conceptual structures that people work
with when making sense of an information space. They describe sense-making
as an ‘information journey’ that typically starts with either identifying a need (a
gap in knowledge) or encountering some information that addresses a latent need
or interest. Whatever the particular theory or perspective on sense-making, there
are a number of typically present characteristics that can be identified: motivated,
continuous, active, inquisitive, open-ended, anticipatory, connective, constructive,
and exploratory. Tasks that are typically performed during a sense-making activity
include scanning the information space, assessing the relevance of items within
the space, selecting items for further attention, examining them in more detail and
integrating them into mental models, establishing questions to be asked, determining
how to organize the answers, searching for pieces of information, filtering aspects
of information, and categorizing items of information [45–47].
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4.1.2 Analytical Reasoning

Analytical reasoning is a special type of reasoning, and is based on rational, logical
analysis and evaluation of information [53]. Because of its intrinsic analytic nature,
an analytical reasoning activity typically involves decomposing or deconstructing
an information space to clearly identify its components and their relationships.
Analytical reasoning is a core concern of visual analytics, and is an activity
performed by analysts from numerous domains, including finance, insurance,
national defense, intelligence, climate science, and others [18, 64]. Although some
aspects of an analytical reasoning activity can be open-ended and exploratory, one
feature that distinguishes it from other complex cognitive activities is its more
focused, closed-ended nature that requires the performance of tasks that have a
limited set of viable, definite solutions. For instance, an analyst is often presented
with a claim and must examine the evidence to either confirm or contradict the
claim [58]. Other typical tasks involved in an analytical reasoning activity include
examining an information space to find alternative or conflicting evidence in order
to challenge an assumption or claim, asserting and testing key assumptions, testing
biases, assessing alternatives, comparing and contrasting different hypotheses with
the goal of identifying the most plausible one, detecting causal relationships and
determining the nature of the supporting evidence, determining which available
resources to use, tracing and identifying cause-effect relationships, predicting future
states of an information space, identifying the variables within an information
space, supporting conclusions and statements with adequate data or evidence, and
elaborating an argument and developing its implications [18, 42, 58, 64].

4.1.3 Learning

Learning refers to an activity in which one gains knowledge of an information
space and develops skills and capabilities to function in the space [36]. During the
process of learning, information is converted into knowledge and assimilated into
pre-existing mental models, thereby creating new or revised knowledge structures
[3]. Although the exact mechanisms by which one learns are not well understood,
a number of mental-state changes that typically occur during a learning activity
can be identified. Chi and Ohlsson [6] characterize such changes as potentially
occurring along seven different dimensions: (1) growth in mental representation
(e.g., mental model or schema) of the information space about which one is
learning; (2) denser connectedness among knowledge elements that exist in mental
space; (3) increased consistency between mental representations and the infor-
mation space; (4) finer grain of mental representation of an information space
along with appreciation of emergent features of the information space; (5) greater
complexity of mental representations; (6) mentally re-representing information
items at higher levels of abstraction; and (7) developing multiple perspectives of
an information space in order to shift vantage points. In other words, during a
learning activity, mental models or schemas change along multiple dimensions: size,
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connectedness, consistency, grain, complexity, abstraction, and perspective. Al-
though these dimensions are separated for analytical purposes, Chi and Ohlsson
suggest that when learning is a complex—rather than simple—cognitive activity,
there are typically mental-state changes along multiple dimensions simultaneously.

Learning shares characteristics of both sense-making and analytical reasoning.
For instance, some aspects of learning are exploratory, inquisitive, and open-ended,
whereas others are focused, analytical, and closed-ended. Unlike other complex
cognitive activities that may be time-sensitive (e.g., decision making in a disaster
scenario), or may not require a deep understanding of the information space (e.g.,
browsing a dataset to identify outliers), complex learning requires effortful and
reflective information processing with the ultimate goal of understanding. In other
words, a distinguishing feature of learning as a complex cognitive activity is that the
ultimate focus is on creating lasting and meaningful changes in mental space that
give one new knowledge and/or skills.

4.2 User-Dependent

While there are obvious differences among users that must be considered for design
and evaluation of any VT, such as age and physical or mental ability, there can
be significant differences among users even within these typical categories. For
example, users differ based on cognitive, thinking, and learning styles. Sternberg
[62] identifies 13 prevalent thinking styles—that is, preferred ways of thinking and
of using the abilities that one has, and posits that they fundamentally influence
one’s cognitive performance. Green and Fisher [16] note that individual user
differences can have significant effects on problem solving behaviors, tasks such as
categorization and information search, and rationality and reasoning (see also [39,
60, 61]). Not only do users have different personalities and cognitive and thinking
styles, they also have different levels of knowledge and expertise that fundamentally
influence courses of action in any given situation. That is, the extent of one’s
knowledge, and the sophistication of one’s conceptual structures, determine what
action choices one has to draw from when performing a complex cognitive activity
[10]. Petre and Green [41] also emphasize the roles of training and experience in
the interpretation of VRs. People see VRs differently—some people see abstract
structure, while others see more concrete configurations and detect different features
[59]. Users should thus be given different VRs to work with, and should be given
multiple action possibilities to work with the given VRs [53]. Treatment of this issue
in the visualization literature is sparse, making it difficult to suggest any concrete
design guidelines for VTs at this point.
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4.3 Information-Space-Dependent

Certain characteristics of an information space fundamentally influence the appro-
priate distribution of information processing. Such characteristics include the size
of the information space, whether information is static or dynamic, homogeneous
or heterogeneous, and structured or unstructured. If the information space consists
solely of a relatively small dataset that does not require any pre-processing or
data mining, for example, most of the information processing occurs in mental
space, interaction space, and representation space. In such a case, the function of
computing space is simply to encode information in VRs and respond to input
from the user’s actions (as is the case in many data and information visualization
tools). Many of these concerns have been discussed previously in Sect. 3.2. Aside
from such concerns, however, are the density, complexity, and other characteristics
of an information space that can place a burden on a user’s mental space while
performing an activity. In other words, some information spaces are more difficult
to understand, conceptualize, mentally navigate, and make sense of. For instance, an
information space containing complex mathematical concepts and an information
space containing simple sports statistics do not require the same amount of mental
effort to understand. In the latter case, it may be desirable to place much of the
information-processing load on mental space, since a typical activity would require
only relatively simple operations (e.g., inferences, categorizations) to be made. In
the former case, however, the required information-processing operations may be
much more sophisticated, necessitating the transfer of information processing onto
other spaces. Although in both cases the user and VT form a joint cognitive system,
the former case requires more sophisticated coordination between the user and the
VT. In such situations, the manner in which the transactions between the user and
VT take place (i.e., via information processing in interaction and representation
space) are of critical importance. The manner in which such transactions are
operationalized can determine the strength of the coupling of the user-VT system
and ultimately affect the quality of the activity being performed (see [55] for more
on this issue). Although some recent work has been done in this area, we still do not
have a principled understanding of how to best distribute the load of information
processing according to the features of the information space.

4.4 VT-Dependent

The ideal distribution of information processing is naturally dependent on the
VT that is mediating the human-information discourse. Numerous characteristics
of the VT and its underlying technology must be considered. These include
processing power, storage capacity, battery power, display resolution, and display
size. Furthermore, the activity must be appropriate for the technology so that the
necessary tasks can be carried out. If the underlying technology is a handheld device,
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for example, the possibilities for intense information processing in computing space
are limited compared to those of a desktop computer. The underlying technology on
which a VT is built also affects the interaction possibilities that can be offered, and
the manner in which information can be processed in interaction and representation
space. For instance, certain technologies may limit the possible operational forms
that interaction elements can take (see Sect. 3.3).

4.5 Discussion

While more research in this area is required before precise descriptions or pre-
scriptions can be given, some previously conducted studies can shed some light on
this matter and provide an empirical basis for discussion. Two studies conducted
by Sedig and colleagues (see [32, 52]), have not only confirmed that cognitive
processes are distributed across users and VTs, that tools shape thinking and
reasoning processes and canalize them in certain directions, and that the design of
VTs fundamentally influences the performance of complex cognitive activities, but
have also made some findings that go against conventional wisdom in the visual-
ization literature. Such wisdom has often promoted ease of use and intuitiveness as
hallmarks of well-designed VTs. In other words, the suggestion is often that the
load of information processing in mental space should be minimized. However,
these two studies have shown that subscribing to such wisdom while designing
VTs can actually result in negative effects on the performance of complex cognitive
activities. VTs designed according to such advice may unintentionally communicate
to the user that he or she need not invest much mental effort to consciously process
information and plan his or her actions with care.

Based on the results of the study reported in [52], the authors suggested that VTs
should reduce the mental information-processing load while users perform tasks that
are not directly focused on information that needs to be integrated into mental space.
These include working with menus, buttons, and other interface elements that are
not encodings of items within the information space. In contrast, it can be beneficial
to increase the mental information-processing load for some tasks that are directly
focused on the information space—e.g., tasks that require forming hypotheses about
items within the space, comparing and assessing alternatives within the space, and
drawing inferences about causal relationships. The second study [32] examined the
cognitive effects of different operational forms of the element of flow (see Sect. 3.3)
while using a VT to support a complex learning activity. The results of the study
suggest that ease and intuitiveness of use are not necessarily conducive to deep
thinking, and can cause the processing of information in mental space to be more
automatic and shallow. Results of the study showed that participants who used the
most intuitive and easy to use version of the VT had significantly lower scores on
post-tests that assessed cognitive performance. Moreover, an extra finding of the
study was that the manner in which flow was operationalized significantly affected
the amount of time required to complete tasks. The groups using discrete actions—



Distribution of Information Processing While Performing Complex Cognitive . . . 711

the more difficult and less intuitive ones—were actually more efficient in completing
the tasks. In contrast, the group that had the most intuitive and easy to use version
of the tool took significantly more time than the other groups. The researchers
concluded that this is likely due to the cost associated with performing interactions.
When users could undo actions with ease, they were not forced to develop pre-
meditated strategies and reflect carefully before performing an action. Therefore,
although counterintuitive according to conventional wisdom in the visualization
literature, not only did placing more information-processing load on mental space
result in better cognitive performance, but it also resulted in faster completion of
tasks.

While such issues are rarely discussed in the visualization literature, they have
vast implications for all VTs that support the performance of complex cognitive
activities. By understanding the distinction among different types of tasks as high-
lighted in [52], for instance, designers of VTs can deliberately alter the distribution
of information processing according to the tasks that are being performed, and can
free up mental resources for the most important information-processing tasks. For
example, consider the design of a visual analytics tool for intelligence analysis. If
designers are aware of the characteristics of analytical reasoning, as described in
Sect. 4.1.2, they can then adjust the load of information processing according to
the tasks an analyst is likely to perform. For instance, the information processing
required to identify and categorize potential threats can be placed mostly on the
computing space. The tasks of assessing a hypothesis to determine its validity
and then comparing it to other hypotheses, however, requires very careful and
effortful processing of information. As a human analyst has more expertise and
better judgment skills than any VT, more of the information-processing load for such
a task should be placed on the mental space. Moreover, by providing specific action
possibilities (see [53]), and by constraining the operationalization of these action
possibilities in particular ways (e.g., as in the study reported in [32]), the thinking
processes of the analyst can be canalized in certain directions to result in more
effective analysis of the information space. While visualization researchers are often
focused on “building impressive tools” [13], discovering and studying the types
of issues mentioned above are necessary if we are to develop highly coordinated,
strongly coupled user-VT systems.

5 Summary

This chapter has examined the distribution of information processing that occurs
when VTs are used to support the performance of complex cognitive activities.
When engaged in the performance of such activities, information processing occurs
simultaneously in multiple spaces in the joint user-VT cognitive system. Further-
more, the processing that occurs in these different spaces is often interdependent. In
order to design and/or evaluate VTs in an effective manner, the issues identified in
this chapter must be well understood. This chapter has drawn on research from mul-
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tiple disciplines, including cognitive and perceptual psychology, computer science,
information visualization, visual analytics, and educational technologies, to provide
an initial examination of the aforementioned issue of information-processing dis-
tribution for complex cognitive activities. By identifying and discussing some key
concerns, integrating some fundamental concepts, and highlighting some current
research gaps that require future study, this chapter lays some groundwork for future
research in this area. The issues examined in this chapter are of importance to many
domains, including visual analytics, data and information visualization, human-
information interaction, and educational and cognitive technologies.

As society’s production of information increases, and the desire to analyze and
make sense of this information also increases, the issues discussed in this chapter
are becoming more pertinent to all areas of endeavor. Whether in insurance, finance,
education, medicine, public health, journalism, science, or other information-
and knowledge-based enterprises, humans need to work with VTs to perform
their information-based activities. Having a principled understanding of how to
best distribute the load of information-processing, according to the considerations
identified in this chapter, will allow for the development of VTs that more effectively
support the complex cognitive activities of their users.
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