
Jonathan Isaac Helfman
Candidate

Department of Computer Science
Department

This dissertation is approved, and it is acceptable in quality

and form for publication on micro�lm:

Approved by the DISSERTATION Committee:

, Chairperson

Accepted:

Dean, Graduate School

Date

Image Representations for Access and

Similarity-Based Organization of Web Information

By

Jonathan Isaac Helfman

A.B., EE and Visual and Environmental Studies, Harvard College, 1981

M.S., Computer Science, Columbia University, 1991

Doctor of Philosophy
Computer Science

July 1999

c1999, Jonathan Isaac Helfman

iii

Dedication

For Beth, Rhianna, Elijah, Sheldon, Muriel, and Ilisha.

For the Mother and the Mystery, Earth and Void.

iv

Acknowledgments

Mandala could not have been completed without the continued support of

many friends, colleagues, and family members. In particular, Beth Craig has been

an invaluable positive force in my life, before, during and after this project. She has

provided emotional strength and daily care of myself, our children, and our family.

Her skills as a proofreader and copy-editor have improved this manuscript as have

many of our discussions about the ideas underlying this project.

Julia Hirschberg and Ron Brachman at AT&T Labs-Research provided me

with the opportunity to work on this project and have continued to support my work

despite the complications caused by expanses of time and space.

Jim Hollan, at the UCSD Cognitive Science Department, has generously shared

his excitement about information visualization, human-computer interaction, and dy-

namic user interfaces. Jim's continual support and con�dence have given this project

a fertile environment in which to grow.

David Ackley, at the UNM Computer Science Department, provided periodic

sanity checks on the engineering, philosophical, and documentary aspects of this

project.

Everett Rogers, at the UNM Communications and Journalism Department,

and Barak Pearlmutter, at the UNM Computer Science Department, provided useful

v

feedback on an earlier version of this document.

Lance Williams, at the UNM Computer Science Department, shared several

enlightening discussions about image scaling. Ron Hightower, Tom Kirk, and Chris

Faehl helped use early versions of Mandala'a proxy server and image server. Hugh

Bivens shared his knowledge of Windows APIs.

The UNM Computer Science System Support Group maintained the machines

and networks, which were provided as part of NSF award CDA-9503064, and which

formed the virtual environment for developing Mandala. Additional support was

provided as part of Darpa grant N66001-94-C-6039: \Beyond Imitation: A Strategy

for Building a New Generation of HCI Design Environments." The Administrative

sta� at the UNM Computer Science Department, particularly Sandy Blanton, Joann

Buehler, Liz Lopez-Gutierrez, and Al Gunn, provided administrative support in New

Mexico. Marina Storey, Mary Johnson, and Mary Baldwin at AT&T Labs-Research

provided administrative support in New Jersey.

vi

Image Representations for Access and

Similarity-Based Organization of Web Information

By

Jonathan Isaac Helfman

Doctor of Philosophy
Computer Science

July 1999

Image Representations for Access and

Similarity-Based Organization of Web Information

by

Jonathan Isaac Helfman

A.B., EE and Visual and Environmental Studies, Harvard College, 1981

M.S., Computer Science, Columbia University, 1991

Ph.D., Computer Science, University of New Mexico, 1999

Abstract

Although digital and visual technologies are beginning to converge, most digital

systems continue to use text to access and organize information. Textual organiza-

tions, such as indexes and conceptual hierarchies, are e�ective for well-structured in-

formation, but seem less e�ective for vast and poorly-structured sources like the World

Wide Web, where information exists in a wide range of formats, styles, and combi-

nations. Images provide a complementary way to represent information that may

be better suited for helping people use large poorly-structured information sources.

Images are perceived quickly, even when reduced in size. Animation, scaling, and

layout techniques can therefore help people access masses of visual information with

minimal cognitive overhead. Because images play a special role in the function of hu-

man memory, hypermedia systems that use images as links to information may be less

susceptible to the classic hypertext problems of spatial disorientation and cognitive

viii

overhead.

Mandala is a platform for studying the utility of images for accessing and

organizing web information. Mandala lets people view hundreds of thumbnails of web

page images. Selecting any thumbnail signals a web browser to display the associated

page. Other systems that use images to represent information focus on server-side

applications, because images can take a long time to retrieve over the web. Mandala

focuses on client-side applications and minimizes retrieval delays by obtaining images

from a proxy server cache. Given a collage of images, people have an intrinsic ability

to identify groups of related images quickly. Mandala is designed to make it easy

for people to share their visually-identi�ed groups with the system by dragging and

dropping thumbnails between windows. Mandala also groups di�erent types of images

automatically, computes layouts for groups, and stores groups as imagemaps. With

these capabilities, Mandala is, at once, a repository for visual site indexes, a visual

history facility, a visual bookmark facility, and a cache visualization application. In

addition to helping people access and organize information, Mandala's visualizations

can increase cache hit-rates and provide shared access to relevant resources, while

revealing the dynamic access patterns of a community.

ix

Contents

List of Figures xv

List of Tables xvii

I Re-Examining Image Representations 1

1 Introduction 2

1.1 Why Study Image Representations? 2

1.2 Why Study Similarity-Based Grouping? 7

1.3 Why \Mandala"? . 9

1.4 Why Mandala? . 10

2 Access and Organization on the Web 14

2.1 Hypertext Visions . 15

2.2 Hypertext Access . 17

2.3 Hypertext Problems . 18

2.4 Web Pages: Part Information, Part Index 20

2.5 Web Browsers: The Web One Page at a Time 21

2.6 Bookmarks: The Web as a Book . 23

2.7 Taxonomies: The Web as a Conceptual Hierarchy 24

2.8 Search Engines: The Web as a Textual Similarity Structure 26

2.9 Web Maps: The Web as a Hypertext Structure 27

x

2.10 Push: The Web as a Targeted Advertisement 29

2.11 Agents: The Web as a Personal Assistant 31

2.12 VRML: The Web as a Virtual World 32

2.13 Visual Information Systems: The Web as an Image Database 33

2.14 Summary . 35

3 Image Representations: The Web as Interactive Cinema 37

3.1 Using Images to Represent Web Pages 38

3.2 Mandala . 42

3.3 Accessing Associated Information 43

3.4 Cache Visualization . 45

3.5 Browsing Session Visualization . 45

3.6 Web Site Visualization . 50

3.7 Bookmark Visualization . 51

3.8 Editing and De�ning Groups . 53

3.9 Saving a Group as an Imagemap . 53

3.10 Diminishing Classic Hypertext Problems 54

3.11 Violating the Author's Intentions . 56

3.12 Violating the Author's Rights . 56

3.13 Images and Memory . 57

3.14 Summary . 59

II A Platform for Using Image Representations 61

4 Introduction: System Architecture 62

4.1 Technical Challenges . 62

4.2 Modular Design . 63

xi

5 Mirage: Mandala's Proxy Server 68

5.1 Cache . 71

5.1.1 How Long to Cache? . 71

5.1.2 How to Uncache? . 72

5.1.3 How to GET when Caching? 74

5.1.4 Cache Implementation . 75

5.2 Monitoring Requests . 77

5.3 Parsing HTML . 78

5.4 Usage Details . 81

5.5 Summary . 82

6 Imago: Mandala's Image Server 83

6.1 GET THUMB: Thumbnail Generation 84

6.2 MAKE MAP: Imagemap Generation . 88

6.3 GET INFO: Image Meta-Data . 94

6.4 GET MAP INFO: Imagemap Meta-Data 94

6.5 GET RATED MAPS: Image and Imagemap Rating 95

6.6 GET . 96

6.7 Usage Details . 97

6.8 Applications . 98

6.9 Implementation . 99

6.10 Summary . 100

7 Mandala Server 101

7.1 GET GROUPS: Group Data . 102

7.2 GET DATA: Image Data . 102

7.3 GET INFO: Image and Imagemap Meta-Data 103

7.4 MAKE MAP: Imagemap Generation . 104

7.5 GROUP: Group Editing . 104

xii

7.6 SELECTION . 105

7.7 DISCONNECT . 105

7.8 Building Associations . 106

7.9 Building Groups . 107

7.10 Building Imagemaps . 107

7.11 Monitoring the Proxy Server . 108

7.12 Managing Multiple Clients . 109

7.13 Usage Details . 109

7.14 Summary . 109

8 Mandala Clients 111

8.1 Communicating with a Mandala Server 112

8.2 Accessing Associated Information 113

8.3 View Uniformity in the Graphical Interface 115

8.4 Layout . 116

8.5 Animation . 117

8.6 Menu Interface . 117

8.7 Using Direct Manipulation to Edit Imagemaps 118

8.8 Using Direct Manipulation to Edit Groups 119

8.9 Updating Views . 120

8.10 Session Groups as a Look-Ahead Cache 124

8.11 Summary . 125

III Future Directions for Image Representations 126

9 Future Work 127

9.1 Future Extensions . 127

9.2 Possible Directions . 128

9.3 Image Representation Evaluation . 129

xiii

9.4 System Evaluation . 131

10 Conclusions 132

Appendix A 138

Related Systems Implemented by the Author 138

A.1 Dotplot: Visualizing Textual Similarity Structures 138

A.2 Ishmail: Reading and Classifying Electronic Mail 139

Bibliography 144

xiv

List of Figures

1.1 Mandala client with three views. 12

3.1 Montage with Netscape. 38

3.2 Visual similarity structures in Montage. 39

3.3 Postcard illustrating stardust.jpl.nasa.gov. 40

3.4 Mandala client with six views. 42

3.5 Double-click on an image to access the associated information. . . . 44

3.6 Mandala client cache view. 46

3.7 Mandala client session view. 47

3.8 Visual site index for pds.jpl.nasa.gov. 48

3.9 Visual site index for www.carta.org. 49

3.10 Visual bookmark for jon/People. 50

3.11 Visual bookmark for jon/News. 51

3.12 Edit groups by dragging and dropping images between views. 52

3.13 Save a group as an imagemap. 54

4.1 Mandala's component structure. 65

5.1 Pseudo-code to determine whether a �le is stale. 72

5.2 Pseudo-code to determine how to GET a web resource. 75

5.3 Pseudo-code to conditionally GET a web resource. 75

6.1 Output of scaling by a factor of 5.8 with di�erent �lters 87

xv

6.2 Imagemap computed with default parameters. 89

6.3 Imagemap computed with non-default parameters. 92

A.1 Dotplot's user interface. 140

A.2 Ishmail's user interface. 142

xvi

List of Tables

5.1 Mirage's Request Interface . 70

5.2 Mirage's Error Interface . 78

5.3 Mirage's Command-Line Options 78

6.1 Imago's Request Interface . 84

6.2 Imago's Thumbnail Speci�cation Interface 85

6.3 Imago's Imagemap Speci�cation Interface (typed values) 90

6.4 Imago's Imagemap Speci�cation Interface (literal values) 90

6.5 Imago's Area Speci�cation Interface 91

6.6 Imago's Command-Line Options and Arguments 97

6.7 Imago's Error Interface . 99

7.1 The Mandala Server's Client Interface 102

7.2 The Mandala Server's GROUP Request Interface 105

7.3 The Mandala Server's Command-Line Options 108

8.1 The Mandala Client's Message Interface 113

8.2 The Mandala Client's View Menu Interface 118

8.3 Mandala Client's Command-Line Options 121

xvii

Part I

Re-Examining Image

Representations

1

Chapter 1

Introduction

1.1 Why Study Image Representations?

One of the primary ways that people experience the world is through visual per-

ception. \We live in a world of things seen, a world that is visual, and we expend

much of our physical and emotional energy on the act of seeing. Like �sh, we `swim'

in a sea of images, and these images help shape our perceptions of the world and

of ourselves" [7, p. 1]. As we see, we understand the world and ourselves visually.

Visual technologies amplify the power of visual perception by showing people images

of distant galaxies as well as atomic structures. Visual technologies also inform and

entertain by displaying multiple images a second to create an illusion of motion.

Visual technologies are becoming digital. Since the recent \revolution" in

desktop publishing, most typography and graphic design is prepared digitally. As

high-resolution digital cameras become a�ordable, they become more convenient than

�lm and video cameras. Telecommunications and cable television companies are

merging to provide broad-band digital networks to peoples' homes. As advances in

hardware and networking continue, visual technologies will continue to become digital,

driving down costs associated with image storage and transmission, and providing

people with a wealth of digital visual information.

2

Although visual and digital technologies are beginning to converge, digital in-

formation systems still use text to represent, model, organize, and access information.

Text dominates our experience of interacting with digital information for historical

and economic reasons. Computers were originally developed to manipulate alpha-

numeric symbols. Text enjoys an e�cient digital representation that can be stored in

a minimum of memory and copied across a network at great speed. Digital images,

however, require much more memory and bandwidth for storage and transmission.

When networks are slow and digital storage is expensive, the utility of image repre-

sentations is questionable. As digital storage prices decrease and network speeds and

bandwidth increase, the utility of image representations should be re-examined.

Today, typical personal computers sell with more than 8 Gigabytes of disk

storage, 64 Megabytes of memory, and internet connections to the World Wide Web

(a.k.a. the web). The web is a global network that supports many di�erent types of

digital media, such as linked documents, linked images, streaming audio and video,

and streaming software applications. Web resources are accessed and organized with

textual representations.

A web resource is accessed by its URL (uniform resource locator), a string of

alpha-numeric characters [9]. When a person types a URL into a web browser, the

browser retrieves and displays the associated resource. From the person's perspective,

the browser converts the textual representation (i.e. the URL) into its associated

information.

Groups of URLs are organized in ways that make sense for textual represen-

tations: lists, menus, taxonomies, and indexes. Most web browsers allow people to

maintain personal URL collections as history lists and bookmarks. Public link tax-

onomies, such as Yahoo!, organize URLs into textually labeled topics, categories, or

channels. Public search engines build textual indexes from samples of web page text

and match textual queries to textually similar web pages.

In some cases, textual organizations seem adequate for large amounts of infor-

3

mation. Most libraries have adopted databases that mimic the document classi�cation

schema of their card-catalog predecessors. The success of these systems make textual

indexes seem like an obvious, natural, and inevitable method for organizing informa-

tion. Libraries rely, however, on a global organization scheme { a single, unifying

database.

Textual strategies for organization seem less e�ective on the web, where there

is no single unifying taxonomy or index. Textual queries result in countless unrelated

matches, which must be examined sequentially. Link taxonomies must be maintained

manually and always seem out-of-date. Many textual labels in our bookmark lists

do not contain enough information to remind us why we made the bookmark. Many

textual labels on hyper-links do not contain enough information to help us decide if

the link is worth following.

Images provide a complementary way to represent information that may be

better suited to browsing very large, poorly-structured information sources like the

web. In many cases, images from web pages provide good representations for the con-

tent of the page. Web pages about people, particularly public �gures, almost always

contain a photograph of the person's face. Web pages about places almost always

contain a photograph of a visible landmark that clearly identi�es the place. Web

pages about objects, particularly objects for sale, almost always contain photographs

of the objects.

Images have become a common strategy for site di�erentiation, in part, per-

haps, because web browsers supported GIF and JPEG image formats before audio

formats or even text style-sheets. Images from the same web site often have a shared

style that is indicative of the site's agenda. For example, many old-looking black-and-

white photographs may indicate a site with historic content, while many adult color

portraits with similar framing and lighting may indicate a site for a corporate board

or research lab. Even images used for decoration, navigation, and advertisement often

provide additional characterizations of a web site (although these images can often

4

be recognized and suppressed).

Illustrated web pages are only the latest example of a rich history of using im-

ages to illustrate and illuminate manuscripts [86, 97]. Illustrations are often designed

to convey the essence of their associated text. Many technical documents contain

highly descriptive illustrations, charts, or diagrams. For example, multi-media re-

searchers working on a system for delivering chemistry abstracts have found that the

illustrations, mostly plots and diagrams of chemical structures, are so important to

their readers that \the interface they would like most would be one in which the

articles were represented by images, with the text being hidden under icons" [53].

Images and text are di�erent media. They are perceived in di�erent ways.

Unlike a textual description, which requires literacy in a speci�c language, an image

can convey information to a wider audience. Representational images of people,

places, and things may be perceived immediately, while text is symbolic and must be

perceived and decoded linearly.

A person seeing an image can also perceive structural information about the

components of an object. For example, \[we] can draw a picture of an unfamiliar

object for a friend, and he will recognize the object if it eventually appears. When

we simply tell our friend the name for the object, he cannot usually recognize the

object when it appears. A picture of an unfamiliar object can tell our friend how

many legs the object has, where its arms and neck are, and so on. Presumably, the

picture tells our friend about familiar visual elements in a new arrangement. If so,

pictures represent parts of objects, not just the whole object" [49, p. 108].

Minimal visual elements convey large amounts of information to people. Even

without texture, shading, and color, \lines can depict any of the visible discontinuities

of surface, pigment, illumination, and texture layout. These are the basic features

that create the visible environment" [49, p. 132].

Although lines may represent objects, their structure, and their surface discon-

tinuities, images often contain much more information than merely lines. Texture,

5

shading, and color add multiple levels of information. Images may also carry sym-

bolic content. The letters of an alphabet are, of course, abstract images functioning

as symbols. Less abstract images also function symbolically, such as government,

corporate, athletic, and religious seals and logos. People have a rich history of imbu-

ing representational imagery with symbolic content, which is reected in art [35, pp.

40-43] and the analysis of dreams [48, p. 55]. Through line, texture, shading, color,

and symbolism, detailed images convey a richness and depth of peripheral and sub-

liminal information that can be appreciated immediately, although the details may

take longer to interpret.

Image representations scale better in space than textual representations. Tex-

tual representations encode most of their information in the high frequencies { edges

and corners of the letter forms. Shrinking text by even one quarter of its original

size usually makes it illegible on a computer screen. In contrast, many images encode

information in the low frequencies { large areas of similar color. Small versions of

images often retain enough low frequency information to allow people to recognize

the visual content of the original image. Not only can people perceive small images

better than small lines of text, but people can perceive more images than lines of

text in the same amount of time. Multiple images can be perceived almost simulta-

neously, while multiple lines of text must usually be read in succession. In this sense,

image representations scale better in both space and time than textual representa-

tions. A system that uses large displays of hundreds of selectable images to represent

information may therefore help people access more information faster.

There is also another way that image representations scale better in time than

textual representations. Psychologists have shown that human visual memory far

surpasses human textual memory, allowing people to distinguish between familiar

and unfamiliar images easily [49, p. 63][94]. Images also improve human memory

for associated textual information [74]. Mnemonics, the practice of improving hu-

man memory, has an ancient history of using images [106]. Because people can easily

6

distinguish between familiar and unfamiliar images, a system that represents informa-

tion with images may help people identify new information (when seeing an unfamiliar

image) and �nd previously accessed information (by remembering and locating a fa-

miliar image). Because images help people remember associated textual information,

they should serve better than textual labels as cues to help people remember why

they made a bookmark and what information was found.

In short, the role of image representations in digital information systems should

be re-examined for a number of reasons. People are already comfortable with using

visual technology to inform and entertain. As visual and digital technologies converge,

economic barriers to using image representations dissolve. On the web, images from

a page provide good representations for the content of the page. Images may be

perceived immediately, without requiring literacy in a speci�c language, while text

is symbolic and must be perceived and decoded linearly. Images convey a richness

and depth of information while revealing additional information if they are studied

longer. Images scale better in space and time than textual representations, allowing

more images to be seen, appreciated, and remembered in a single instant. A system

that uses images to represent information should therefore allow more people to be

more productive by accessing and organizing larger amounts of information.

1.2 Why Study Similarity-Based Grouping?

When people have a lot of information to organize, they tend to group similar things

together [62]. Grouping by similarity is a natural strategy for organizing physical

objects and abstract concepts, as well as digital information. Grouping manages

complexity by hiding di�erences between group members while emphasizing di�er-

ences between groups.

Most automatic methods for similarity-based grouping of documents (i.e. content-

based clustering) use textual similarity metrics [88, Chap. 8]. Automatic methods for

7

similarity-based grouping of images have also been developed. While these meth-

ods have shown some success for particular types of images [36], they usually identify

such low-level graphical features (e.g., color and texture distributions) that they rarely

seem to group images with similar content [31, 93]. In contrast to automated image

clustering algorithms, a person can group images with similar content quickly and

easily.

E�ective grouping improves access. Information systems that support grouping

often allow an entire group to be accessed at once. For example, atomic operations

(such as copying, printing, or deleting) can be applied to each �le in a directory

or to each message in a mailbox. Some information systems display summaries of

group members in the form of an interactive overview, such as a bookmark menu, the

results of a search, or a table of selectable images. Interactive overviews help people

see patterns in large amounts of information without sacri�cing access to individual

items. Individual items contributing to any pattern can be selected to access their

associated information (and perhaps determine the cause of the pattern).

Using images to represent information changes the way information is orga-

nized. Gestalt psychologists have observed that people group related visual stimuli

with very little conscious e�ort or awareness [52, Chapter 5, p. 80][100]. Cognitive

psychologists have veri�ed these observations with performance data [47, 82] and cog-

nitive neurobiologists have included perceptual grouping in their theories of vision[64,

p. 91]. Grouping enables related visual stimuli to be distinguished from their con-

text, allowing people to di�erentiate objects from backgrounds and, therefore, begin

to make sense of their visual environment. Interactive overviews of image represen-

tations take advantage of peoples' hardware for pattern recognition, allowing them

to identify groups of similar images much faster than they could identify groups of

similar textual representations.

Groups of image representations may also diminish several classic problems

with hypertext systems (see Section 3.10). Spatial disorientation, which is caused by

8

unfamiliarity with possibly complex hypertext structures, may be less of a problem

when navigating through groups of similar images, which atten hypertext structure.

Because images provide better memory cues than textual labels, remembering which

links have been visited, and which were interesting enough to return to, may be

less of a problem when using image representations. Saving session summaries and

bookmarks as image representations (see Section 3.9) may make people's histories

easier to use and maintain.

The focus of this dissertation is on the creation of a system architecture for

letting people use images to represent web pages. Although the architecture is de-

signed to facilitate experiments and user studies that could test the utility of image

representations (see Section 9.3), these experiments have yet to be performed.

1.3 Why \Mandala"?

A Mandala is a sacred geometrical structure, used for magical, medical, astrological,

and religious purposes in South Asia, particularly by Tibetan Buddhists and other

followers of the Hindu tantric tradition. Although the literal meaning of the word

in Sanskrit is \circle," Mandalas usually have a central axis, which is the focus of

concentric circles and quartered squares. Mandalas often include small pictures, which

are integrated with the geometry. For Carl Jung and his contemporaries, the Mandala

was a symbol of the wholeness of the self. For Zen Buddhists, the circle is a symbol of

enlightenment. The system described in this dissertation is named Mandala because

it uses geometry to organize information visually in an attempt to augment human

memory and intellect.

9

1.4 Why Mandala?

Mandala was developed for the following reasons (also referred to later as Mandala's

\purposes"):

1. To provide an environment in which people can use image representations to

access and organize web resources.

2. To explore visual organization strategies for image representations.

3. To provide additional support for image representation applications, such as

real-time cache visualizations, visual web site indexes, and visual bookmark

facilities.

4. To provide additional support for evaluating image representations and their

organizational strategies.

While most operating systems support storage and manipulation of text, there

is minimal standard support for caching, compressing, decompressing, shrinking, or

combining images. Basic support is also lacking for building web-based information

systems that both extract information from real web pages and interact with unmod-

i�ed web browsers and servers.

Mandala is an extensible framework of reusable components, which provides

basic support for studying image representations on the web. One of Mandala's

components is an image server, Imago, which is used to generate thumbnails and

imagemaps of GIF and JPEG images (see Chapter 6). Image shrinking is supported

with a fast and novel hybrid scaling algorithm. Imagemaps can be created using a

variety of layout algorithms.

Another Mandala component is a proxy server, Mirage, which provides support

for image caching and has been extended to provide support for describing its cache,

parsing web pages, and monitoring unmodi�ed browsers and servers (see Chapter

5). A proxy server is a program that sits between web browsers and servers. Web

browsers are easily con�gured to make requests through a proxy server, rather than

10

requesting resources directly from web servers. There are several advantages to using

a proxy server (e.g., improved security, content �ltering), particularly one with a

large cache (e.g., increased bandwidth and access, decreased latency and connection

charges). Since they receive both client requests and server responses, proxy servers

are uniquely positioned to monitor web tra�c. Monitoring web tra�c with a proxy

server is transparent to users and requires no modi�cations to their web browser code

(see Section 5.2).

Mandala's graphical user-interface (GUI) is designed to support the explo-

ration of visual organization strategies for image representations. Mandala's GUI is

supported by a Mandala client as shown in Figure 1.1 (see Chapter 8). Mandala

clients allow people to visualize groups of web pages by displaying images from many

pages simultaneously. The displays function as visual interactive indexes. Each small

image is an interactive representation that can be selected to access its associated

page in a regular web browser. Groups of representations may be speci�ed in many

ways, such as URLs in a bookmark �le, the history of a browsing session, the results

of a query, etc.

Mandala provides additional support for applications of image representations.

For example, since the proxy server can describe its cache and its caching activity,

Mandala functions as a real-time cache visualization application (see Section 3.4). The

proxy server's monitoring capabilities also allow Mandala to build a visual history of

a web browsing session (see Section 3.5) or to display representations of pages that

are reachable from the most recently requested page (see Section 8.10). By grouping

image representations from the same web site and storing them as imagemaps, Man-

dala functions as a repository for visual interactive site indexes (see Section 3.6). As

an additional example, Mandala functions as a visual bookmarks application by orga-

nizing and presenting images from the pages listed in a person's Netscape bookmarks

�le (see Section 3.7).

11

Figure 1.1: Mandala client with three views. Each view displays a group of

representations. The rightmost view has been toggled to display only textual

representations.

Finally, Mandala functions as a testbed for future research in web-based visual

information systems (see Chapter 9). Mandala provides facilities to support future

experiments for evaluating image representations and their organizational strategies.

For example, the views in the graphical interface can be toggled to display represen-

tations using images or text, which could facilitate comparisons between visual and

textual representations (see Figure 1.1). Mandala components log interactions, allow-

ing detailed analysis of user behavior. In addition, the proxy server provides several

opportunities for study. For example, the cache can be loaded with particular sets of

pages before being disconnected from the web, restricting web access and providing a

controlled environment for experiments. The cache size can also be varied, allowing

experiments that compare representation type as a function of available information.

This chapter has described how the experience of interacting with digital in-

formation is dominated by textual representations and their organizations. Images

have been introduced as a complementary way to represent information that may

be better suited to browsing very large, poorly-structured information sources like

12

the web. People have highly advanced abilities for identifying and grouping relevant

visual information, which suggests that the design of visual information systems can

bene�t from user-centered techniques for grouping images. Mandala has been cre-

ated to provide an environment for exploring the utility of image representations,

their organization strategies, and their various applications.

The remainder of this document describes other web access and organization

technologies, highlights unique aspects of image representations, and describes how

to use Mandala and how it works. Typical approaches for access and organization

on the web are described in Chapter 2 and compared to image representations in

Chapter 3. Chapter 3 also provides several examples of using Mandala for frequent

tasks. General issues concerning Mandala's architecture are described in Chapter 4,

followed by speci�c descriptions of each of Mandala's components: the proxy server

(Chapter 5), the image server (Chapter 6), the Mandala server (Chapter 7), and the

Mandala clients (Chapter 8). Future work is described in Chapter 9 and conclusions

are discussed in Chapter 10. Appendix A describes related systems implemented by

the author and their similarities to Mandala.

13

Chapter 2

Access and Organization on the

Web

The web is a collection of technologies for communicating and accessing multi-media

information on a world-wide network of computers. In principle, the web's many

technologies could provide multiple modes of interaction and information access. In

practice, web technologies have not grown much past the relational access method

of the selectable hyper-link. Web clients and servers communicate with a protocol

called HTTP, the Hypertext Transfer Protocol [33]. Web documents are written in

HTML, the Hypertext Markup Language [8, 83].

In this chapter, the earliest visions of hypertext systems are re-examined to

emphasize their author's hopes for augmenting human memory and intellect. Hyper-

text access strategies and the problems experienced while using hypertext systems

are also reviewed. In addition, many web technologies are described and evaluated

in terms of how well they address hypertext problems and allow people to access and

organize relevant information. Although it is useful here to distinguish various tech-

nologies, as the web continues to grow and change, boundaries between technologies

continue to blur.

14

2.1 Hypertext Visions

Hypertext was originally conceived of as a technology for augmenting human intellect

and cognition. Consider the following seminal titles:

� \As We May Think," 1945, Bush [17].

� \A Conceptual Framework for the Augmentation of Man's Intellect," 1963,

Engelbart [30].

� \Literary Machines: The Report on, and of, Project Xanadu, Concerning Word

Processings, Electronic Publishing, Hypertext, Thinkertoys, Tomorrow's Intel-

lectual Revolution, and Certain other Topics Including Knowledge, Education

and Freedom," 1981, Nelson [70].

By emphasizing thought, intellect, and knowledge, the titles reveal the hope

that hypertext could improve cognition by augmenting human abilities to access and

organize information.

Bush was motivated by the associational structure of human thought and its

potential advantages over current methods of data indexing:

Our ineptitude in getting at the record is largely caused by the arti�ciality

of systems of indexing. When data of any sort are placed in storage, they

are �led alphabetically or numerically, and information is found (when it

is) by tracing it down from subclass to subclass. It can be in only one

place, unless duplicates are used; one has to have rules as to which path

will locate it, and the rules are cumbersome. Having found one item,

moreover, one has to emerge from the system and re-enter on a new path.

The human mind does not work that way. It operates by association.

With one item in its grasp, it snaps instantly to the next that is suggested

by the association of thoughts, in accordance with some intricate web of

trails carried by the cells of the brain. It has other characteristics, of

course; trails that are not frequently followed are prone to fade, items are

not fully permanent, memory is transitory. Yet the speed of action, the

intricacy of trails, the detail of mental pictures, is awe-inspiring beyond

all else in nature.

...Selection by association, rather than by indexing, may yet be mecha-

nized. One cannot hope thus to equal the speed and exibility with which

the mind follows an associative trail, but it should be possible to beat

the mind decisively in regard to the permanence and clarity of the items

resurrected from storage. [17, p. 121]

15

Bush used the associational structure of human thought as a model for his

Memex machine. He was hopeful that associational organizations would circumvent

the problems of traditional textual organizations. This theme is echoed in Nelson's

\A New Home for the Mind?":

An alternative to this care and feeding of ever more complex systems

based on simplistic frameworks is to seek a framework that holds and deals

with ideas and their relationships in their natural form and structure, in

their full and exact intricacy. To face squarely and early the natural

implications of a process brings simplicity in the long run. [71]

Both Bush and Nelson believed that the relational structure of hypertext could

model complex ideas better than traditional methods of indexing. The web embodies

a colossal challenge to their vision. Most of the web's relational structure is created

by authors and publishers who add hyper-links to their web pages, but they cannot

possibly link to all other related pages. The widespread use of search engines (see

Section 2.8) suggests that readers need to augment the relational structure of authors

and publishers. Readers need tools to let them access and organize information in

ways that are relevant to their goals and needs.

Another challenge to the power of the relational structure of hypertext is ev-

idenced by the preponderance of broken hyper-links { links that do not point to

resources because the resources have been moved or their servers have become in-

accessible. Broken links are an indication of the transitory nature of associational

structures that Bush had hoped automation would eliminate.

Bush described the process of reading, collecting, and organizing information

by adding new links. He called sets of links trails, and he proposed that trails could

be shared with other people. Bush recognized hypertext as a tool not only for ac-

cessing information but also for organizing information with the intent to share it.

Bush's Memex was a single-user machine, however, and he did not propose a plan

for allowing multiple Memex systems to communicate and share associations. By

contrast, Nelson's Xanadu project is a global organizational structure, like the web,

16

which allows people to reference other people's information. Unlike the web, how-

ever, Xanadu is based on a scheme for collection of royalties in exchange for accessed

information.

Engelbart's \A Conceptual Framework for the Augmentation of Man's Intel-

lect" envisions further expanding a person's abilities to organize information:

...the symbols with which the human represents the concepts he is manip-

ulating can be arranged before his eyes, moved, stored, recalled, operated

upon according to extremely complex rules - all in a very rapid response

to a minimum amount of information supplied by the human, by means

of special cooperative technological devices. In the limit of what we might

now imagine, this could be a computer, with which individuals could com-

municate rapidly and easily, coupled to a three-dimensional color display

with which extremely sophisticated images could be constructed.... [30]

Engelbart envisioned a system for augmenting human intellect in which ideas

could be represented and manipulated visually. The focus of the present dissertation

on image representations follows directly in the spirit of Engelbart's vision.

2.2 Hypertext Access

The relational structure of hypertext encourages information access to take the form of

browsing although analytical search strategies are also possible. Browsing is generally

de�ned as seeking information in an informal and opportunistic manner. Browsing

\depends heavily on the information environment" and \coordinates human physical,

emotive, and cognitive resources in the same way that humans monitor the physical

world" [63, p. 100]. Browsing is especially e�ective when the information environment

is well organized, the information task is poorly de�ned or interdisciplinary, or when

the goal is to gather a range of information about a topic [63, p. 100].

Foss identi�ed at least three advantages of browsing over sequential reading:

1) to provide an opportunity for the reader to learn how data is organized; 2) to

learn about concepts that are related to their main topic of study; and, therefore, 3)

provide the potential to broaden or rede�ne a reader's original goals [37].

17

At least three general browsing strategies have been identi�ed: 1) random

browsing, 2) browsing topics of general interest, and 3) directed search [25].

Analytical search strategies are di�erent from browsing strategies [63, p. 73].

Analytical strategies depend on planning and iterative query reformulation, while

browsing strategies are opportunistic and depend on a person's ability to recognize

relevant information. For example, if a person has to �nd a picture of a particular

chemical compound in a textbook, they could use directed search, by ipping through

the book to try to �nd the �gure, or they could use a more analytical search strategy,

by consulting the book's index.

Most information-seeking tasks require a hybrid strategy that combines aspects

of analytical and browsing strategies. Evidence suggests that users often combine

strategies and change their strategies as they encounter new information. Catledge

and Pitkow's study of web usage found the most common browsing strategy to be

local backtracking { continually returning to a page with many links, such as browsing

through the results of a search engine query [21].

2.3 Hypertext Problems

At least two major types of problems with reading hypertext have been identi�ed

[24]. They are described as follows:

1. Spatial disorientation

(a) Where am I?

(b) Where should I go next?

2. Cognitive overhead [37]

(a) Trail-blazing: Does the link label provide enough of a clue to decide if it

is worth following?

(b) Lack of closure: Which pages have I already visited? Are there any unvis-

ited relevant pages nearby?

18

(c) Embedded digression: Have I neglected to return from a digression? Have

I neglected to pursue a digression? Now that I am here, what was I going

to do?

(d) Session summarization: Can I summarize what I have learned in this ses-

sion?

Spatial disorientation is caused by unfamiliarity with complex hypertext struc-

tures. Most strategies for helping people stay oriented utilize either careful design or

graphical displays of hypertext structure (see Section 2.9). These strategies reinforce

a navigational metaphor in which the reader moves through structured information.

When information is structured in a way that makes sense to the reader, spatial

disorientation is diminished.

The problem of where to go next is compounded by the issues of cognitive

overhead, the general level of complexity associated with multiple choices. The choice

can be daunting whether a person is deciding which hyper-link to select on a particular

web page, or using one of the web technologies discussed later in this chapter, which

o�er numerous hyper-links to other possible destinations.

Trail-blazing, the inability to determine if a link is worth following, is a rep-

resentation problem. Web page authors, taxonomy maintainers, and search engine

designers must each devise adequate representations for links to other web pages.

Lack of closure is the inability to determine which pages have been visited or if any

nearby, unvisited pages are relevant. Embedded digression is the inability to manage

multiple, nested digressions. These problems are minimally addressed by most web

browsers, which color the representation of visited links to distinguish them from

unvisited links. Session summarization is the inability to save the state of a browsing

session. Session summarization is rarely addressed by web technologies, which seem

to assume that people will be able to recover the state of a browsing session from

strategically saved bookmarks or successful search engine queries.

To a large extent, the classic hypertext problems are consequences of the as-

sumption that brief textual labels on hyper-links can represent web pages e�ectively.

19

Mandala avoids many aspects of these problems by using images to represent web

pages, because images can contain more information and serve as better memory

cues than brief textual labels (see Section 3.10).

2.4 Web Pages: Part Information, Part Index

Web pages containing hyper-links can be thought of as embodying relational struc-

ture; they are part information and part index to related information.

The relational structure of the web makes it possible (in theory) for pages to

be linked to all other related pages in their \full and exact intricacy" [71]. In practice,

however, such pages are highly impractical and unlikely for a number of reasons:

� They would require a very large number of links.

� They would be very di�cult to maintain and almost always out of date.

� They would be incomplete: their organization could never anticipate all possible

types of relationships for all types of users.

Unfortunately, web pages are not likely to live up to their potential of being

linked to all other related web pages. Nevertheless, most of our web technologies for

accessing and organizing web pages take the form of new pages that act as partial

indexes to related information.

A problem with hyper-links is the volatile nature of the web, which makes it

extremely di�cult to keep links up-to-date. It is not uncommon for web pages to

reference broken links (i.e., links that point to inaccessible or non-existent pages).

New pages are constantly added, old pages are constantly changed or removed. In

addition, links often seem broken because they link to web servers that have either

crashed or are so overloaded that they do not respond to requests.

Some programs have been developed to automatically check for broken links.

For example, some search engines have an option to check the web pages that match

a query and only report matches that are accessible and actually contain the desired

20

content (i.e., that have not changed too much) [91]. Unfortunately, requesting these

options invariably causes search engines to take a longer time to run. Systems also

exist to report any broken links in a person's HTML �les [29].

Hyper-links give web pages associational structure. Each web page is part of

a larger network of related pages. Web \pages," however, are artifacts of a textual

metaphor (as are bookmarks, which are described in Section 2.6). The web browser

user interface, the primary technology for viewing web pages, is modeled after a book.

2.5 Web Browsers: The Web One Page at a Time

Most web browsers force people to access the web one page at a time. Access at this

limited level of granularity makes it di�cult to assimilate information. Sometimes

only a fragment of a web page is relevant. Other times relevant information spreads

across several di�erent pages at several di�erent web sites. Nevertheless, our tech-

nologies force us to access the web one page at a time even though the granularity

of web pages may be too large in some cases (when only a fragment of the page is

relevant) or too small in others (when relevant information is spread across several

pages).

As people �nd information on the web that is relevant to their particular tasks,

they make new associations between pages and partial pages. These associations

might not be captured by pre-existing hyper-links. Yet these associations are precisely

the structures that are most relevant to people. If it were possible, it would be useful

to have web browsers that let people capture relevant structures as they use the web.

Web browsers try to help people capture relevant structures by providing his-

tory lists and bookmark facilities. A history list is a list of each URL a person visits.

Most web browsers maintain a history list and instantiate it as a menu of web page

titles. People can select a title from the menu to access the associated page. Book-

marks are like history lists in that they are a list of URLs that a person has visited,

21

which is instantiated as a menu of web page titles. (Bookmarks are described further

in Section 2.6.) While browsers maintain history lists automatically, people add their

own bookmarks to relevant pages. Bookmarks are also stored on disk, so they last

from session to session, while history lists last for only one session.

History lists have several problems. One problem is that many web page titles

do not adequately represent the content of the page. Another problem is that web

browser's often truncate history lists unexpectedly (e.g., after a person visits more

than some maximum number of pages). Perhaps a more signi�cant problem, however,

is that a history list might not capture structures that are relevant to people's goals

and needs. People might want to edit their histories and save them. They might not

want web browsers to edit their histories in arbitrary ways.

In fact, people might want a much more general and exible way to record

meaningful structures, such as annotation facilities. Bush considered note-taking one

of the fundamental advantages of his Memex system [17, p. 121]. Although support

of note-taking is implicit in some of the early, personal hypertext systems, such as

NoteCards [40], this capability seems largely forgotten in web-based technologies.

Annotation is inadvertently supported by web browsers that provide WYSIWYG

(What You See Is What You Get) capabilities for editing HTML [3]. WYSIWYG

capabilities allow HTML objects to be copied from one web page and pasted into

another. Since hyper-links that are copied still link to their associated resource,

WYSIWYG HTML editors can be used to take notes and summarize browsing sessions

as interactive \scrap-books."

While WYSIWYG capabilities allow people to save portions of web pages, only

the prototype web browsers, DeckScape [14] and Web Forager [19], allow people to

group web pages. The idea of allowing users to create sets of pages also existed in

earlier hypertext systems, such as the NoteCards FileBox [40] and the Hypercard

card stack [72]. Browsers that allow users to create their own sets of pages are a

signi�cant improvement over those that just support history lists and bookmarks.

22

Grouping allows people to expand the level of granularity from the individual page,

allowing them to structure relevant information in meaningful ways. Multiple groups

of pages are presented in a single window where pages can be classi�ed. Groups can

be scanned, edited, and ordered using direct manipulation techniques. Web Forager

can be used with another system that has been designed to provide computational

support for organizing groups of pages into categories [79]. Groups of pages can be

constructed by using a combination of hypertext connectivity, usage patterns, and

inter-document similarity metrics.

Mandala lets people capture relevant structures as they browse the web, but

it breaks away from the textual page metaphor entirely. Mandala uses images from

visited pages to represent the pages, displaying a visual record of people's history as

they browse the web (see Section 3.5). Mandala groups images in several ways, and

people can also create their own groups by dragging and dropping images between

windows (see Section 3.8).

2.6 Bookmarks: The Web as a Book

Most web browsers let people save URLs of pages that they might need to access

again later. These client-based URL repositories are termed Bookmarks in Netscape

Navigator, although each browser seems to require a di�erent name (e.g., HotLists,

Quicklists, Favorites). Bookmarked pages are typically accessed through menus that

are maintained by the web browser. The Netscape browser allows people to orga-

nize bookmarks into personal concept hierarchies, which are then instantiated as a

hierarchical menu. People can group URLs together in folders, which can be named

and positioned within a hierarchy and accessed together in the same sub-menu. A

personal concept hierarchy is stored as a single web page using nested HTML def-

inition lists. When the page is loaded in a browser, the title of each bookmarked

page appears as a hyper-link to the bookmarked page. Bookmark editing facilities

23

are, therefore, very primitive HTML editors. They provide a simple mechanism for

creating personal interactive indexes.

Bookmark facilities give people control of their own URL collections. However,

the support provided for maintaining bookmarks is limited. There is little support to

help assimilate new material or to help organize and maintain the collections when

they grow large. Perhaps it is for this reason that Catledge and Pitkow found that

bookmark facilities are rarely used [21].

Some work has been done to improve bookmark facilities. Maarek and Ben

Shaul have developed a tool that combines manual and automatic organization facil-

ities for bookmarks [58]. It can be used to automatically classify a new bookmark

or re-classify a sub-tree of existing bookmarks. Wittenburg et.al. created a system

that merges the personal bookmarks of multiple users [103]. Although individual pri-

vacy may su�er, this approach allows people to share the bene�ts of any work done

maintaining individual bookmark collections.

Because individuals are responsible for maintaining them, bookmarks are par-

ticularly susceptible to the broken link problem (see Section 2.4). Netscape's newer

browsers provide support for identifying bookmarked items that have changed and

agging them with little icons in the bookmarks menu. Other, more sophisticated

facilities also exist for detecting changes in web pages [29].

Mandala augments traditional bookmark facilities by converting a Netscape

bookmarks �le into a series of imagemaps containing thumbnails of images from the

bookmarked pages (see Section 3.7).

2.7 Taxonomies: The Web as a Conceptual

Hierarchy

Taxonomies, such as Yahoo! and the World Wide Yellow Pages, are pages of links that

are organized into conceptual hierarchies. Taxonomies are organized manually by a

24

sta� of people who categorize web pages by deciding where they should be positioned

in a concept hierarchy. Categorizing pages is not easy. The quantity of new web pages

continues to increase. Some new pages may require augmenting or rearranging the

existing taxonomy. Also, it is di�cult to categorize pages where people will �nd them,

because a person's mental conceptual hierarchy might not match the link taxonomy.

The two concept hierarchies are quite likely to di�er structurally, and even more likely

to use di�erent category labels [38]. To address this problem, multiple links to the

same page (i.e., cross-references) may be positioned throughout the taxonomy, but

they may need to be minimized for maintenance purposes.

Taxonomies are often a �ne place to begin browsing and are generally useful

for accessing popular and older sites, but they rarely have links to sites that are new,

unusual, or obscure. Even if they did, the links may be hard to �nd in cases where

the user's mental conceptual hierarchy does not match the conceptual hierarchy of

the taxonomy. The more a person uses a particular taxonomy, the more familiar he

becomes with its structure, and the more likely he is to �nd what he is looking for (or

at least �nd where in the taxonomy it would be). However, this e�ect is somewhat

negated by the existence of many di�erently-structured taxonomies and the tendency

for taxonomies to be restructured as they grow.

Some systems exist to help people navigate through taxonomies graphically

[4]. If it were possible, it would be more useful to have public taxonomies that were

customized to individual's tasks and personal concept hierarchies. Bookmarks can be

used as customized taxonomies, but they require users to do all the organization and

maintenance. Some taxonomies are searchable and, therefore, customizable within

the scope of the existing concept hierarchy.

Mandala's facilities for grouping, classifying, and storing groups of image rep-

resentations also support personal index creation, while o�oading some of the orga-

nization and maintenance tasks (see Sections 3.8 and 3.9).

25

2.8 Search Engines: The Web as a Textual

Similarity Structure

While taxonomies are generic structures that are general enough for many di�erent

users, search engines are personalized. Because search engines automatically generate

new pages of links in response to user queries, they have the potential to provide

more accurate access to relevant information than taxonomies. In practice, however,

it is di�cult for people to formulate queries that retrieve the desired results. While

perhaps the most popular web access method, search engines can be quite frustrating

to use.

People do not have a good model for how web search engines work. Many

aspects of web search engines make it very di�cult for people to build a model that

could explain how they work. For example, the same query will yield di�erent results

on di�erent search engines, because they each index a di�erent portion of the web.

The same query may also generate di�erent results at di�erent times, because the

web changes and indexes are updated constantly.

It is di�cult to try the same query on multiple search engines, because syntactic

rules for formulating queries vary across search engines. Some meta-search engines

address this problem by querying multiple search engines and eliminating duplicates

before presenting the user with the coalesced results [89, 91, 99]. Even so, there are

often so many pages matching a query that it is di�cult to identify the relevant links

in all the noise (i.e., recall is high, but precision is low). This is in part because most

web documents are short and most web queries are only one or two words [78]. Also,

many likely key-words have multiple meanings, which makes them less e�ective in

queries. In addition, people rarely agree on brief textual names for naming concepts

or labeling categories [38].

It is also never clear how much of the web is indexed and how much is not.

Many web pages have content that may not be accurately represented by any asso-

26

ciated text (e.g., images, audio, or video). Many pages will not be indexed at the

author's request or because they are generated automatically.

One search engine technology that helps people narrow their search to the in-

formation they need is AltaVista's \query re�nement" facility (also called LiveTopics,

la vache, and cow9) [2]. Query re�nement uses text classi�cation techniques to group

search results into categories. Each category is labeled with its relative size as well

as the key words and phrases that distinguish the documents in that category. For

example, an initial query, \image classi�cation," retrieved about 875 documents. Ac-

cessing the re�ne interface for this query indicates that 74% of the results have to

do with \sensing." Other categories are also indicated along with their relative sizes

(e.g., \unsupervised" 49%, \neural" 47%, and \vegetation" 42%). Query re�nement

lets people narrow their search to relevant categories. For example, the initial query,

\image classi�cation," was made signi�cantly more e�ective by excluding the terms

\sensing" and \vegetation." By grouping search results, query re�nement increases

the granularity of access. Instead of being forced to inspect each result sequentially,

people can manipulate groups of results, focusing on a relevant category or eliminating

irrelevant categories.

Although Mandala is better suited for browsing than searching, it also groups

representations of web pages. In addition, Mandala allows people to edit, save, and

share groups.

2.9 Web Maps: The Web as a Hypertext

Structure

Graphical displays of hypertext structure are a common strategy for minimizing spa-

tial disorientation. Hypertext \maps" [40] or \overview diagrams" [72] were popular

graphical orientation techniques in early hypertext systems. These maps typically

take the form of graph diagrams in which nodes correspond to hypertext pages and

27

edges correspond to links between pages. Most attempts to add maps to hypertext

browsers use one view for the map and a separate view for the current textual page

[40]. Other systems include two di�erent types of maps: a global view of the entire

web structure and a local view of the current page and its immediate context [72, 105].

A variety of maps have also been implemented on the web [28, 44, 67].

One problem with maps is that they do not scale up { as the number of

connected nodes increases, maps become an unintelligible tangle of edges [15]. An

overview of the entire web would be too complex to alleviate disorientation. For this

reason, web maps may be a natural �t for multi-scale environments [44].

Another problem is that while maps display hypertext structure, they hardly

ever display semantic information about the contents of a web page or how the con-

tents of one page relate to any other [37]. This problem has been addressed by visual-

ization research that attempts to combine structural abstractions (�ltering, grouping,

and hierarchization techniques) with user-selectable binding of visual attributes [67].

Perhaps a more fundamental problem with maps is that their utility hinges

on the implicit assumption that the hypertext structure of the web is meaningful

and relevant to people attempting to access information. Although this may be true

within some well-organized web sites, web structure is so chaotic and dynamic that

it seems less relevant to people than the structures they generate as they locate and

organize relevant information.

In general, the pre-existing hypertext structure of the web may not be as

relevant to readers as the mental structures they create while reading. The results

of at least two behavioral studies of how people navigate in information systems

suggest that users' own internal models of how information is organized may be more

important for successful searching than any graphical user-interface cues designed to

aid in navigation [18, 51].

28

2.10 Push: The Web as a Targeted Advertisement

Some web technologies seem to be modeled after traditional broadcast media. Stream-

ing audio seems to be modeled after radio. Shockwave, Flash, and Mbone seem to

be modeled after television. Digital media also provide the opportunity for person-

alization in the form of targeted broadcasting. Push technology (i.e., point-casting,

web-casting, channel-casting, or narrow-casting) is a general term for a collection of

web technologies that deliver customized information automatically.

One advantage of push technologies is that critical information can be delivered

immediately. For example, software upgrades can be performed as soon as a new

software version is released, or a new version of a document can be delivered as soon

as it is changed. Another advantage is that most push technologies provide �lters for

letting people indicate their degree of interest in various types of available information.

One disadvantage of push technologies is that they can consume large amounts

of network bandwidth. Push seems most appropriate for corporate intranets, where

bandwidth considerations can be more easily controlled. Miramba's push technology

focuses on updating software over a network automatically [65]. BackWeb's product

focuses on delivering business-critical information to a corporate sales force.

Another example of push technology, PointCast, is a news-feed that takes its

input from multiple sources such as CNN, CNNfn, Reuters, PR Newswire, Business-

Wire, Sportsticker, and Accuweather [81]. After Dark Online has a similar product

in the form of a screen saver. These systems allow people to indicate preferences,

which are used to create �lters for identifying articles that are likely to be relevant.

Headlines of these articles are presented in an interactive display along with adver-

tisements. Selection of any headline causes the associated news story to be displayed.

PointCast is similar to Mandala in a few ways:

� new information is �ltered;

� the presentation of information is animated; and

29

� the representations in the presentation (e.g., news headlines) are selectable to

access related and more detailed information (e.g., news stories).

However, PointCast also di�ers from Mandala in several signi�cant ways:

� PointCast information is organized into channels;

� PointCast �lters eliminate information;

� PointCast �lters do not help people group information;

� PointCast stores and owns a user's �lters; and

� PointCast incorporates and pays for itself through advertisements.

PointCast �lters weed-out irrelevant information; they do not help people orga-

nize information into groups. PointCast information is already organized into groups

or channels, such as \sports," \weather," and \foreign." Pre-structured information

can be useful, but it also shares the problems found in public taxonomies: it may be

di�cult to �nd relevant information that is new, unusual, obscure, or that does not

�t into one of the pre-de�ned channels.

Proponents of push technology argue that targeted broadcasting will improve

information access through personalization, despite the potential annoyance of tar-

geted advertising. The inclusion of advertisements into the PointCast model is an

indication that the information being pushed is not under the direct control of the

user. Perhaps even more signi�cant is the relationship between the advertisements

and the storage of user customizations or �lter speci�cations. In the PointCast model,

users send their �lter speci�cations to the PointCast Network. The alleged advantage

is that this will help minimize network tra�c and allow advertisements to be targeted.

Mandala takes the opposite approach: people should be able to maintain their

own �lter speci�cations, make their own decisions about the relevance of information,

and have support for grouping the information they collect to better understand and

assimilate it.

30

2.11 Agents: The Web as a Personal Assistant

Although the term \agent" has crept into common usage, few researchers in the

�eld seem willing to provide the term with a de�nition. When de�nitions can be

found, they seem general enough to encompass most software systems. For example:

\Autonomous agents are computational systems that inhabit some complex, dynamic

environment, sense and act autonomously in this environment, and by doing so realize

a set of goals or tasks that they are designed for" [60].

Perhaps a better way to understand what an agent is supposed to be is through

the metaphor of a personal assistant that collaborates with the user [59]. Such assis-

tants are smarter and friendlier than typical programs. They are able to learn from

a user's behavior, anticipate a user's needs, and return useful results without having

to be speci�cally programmed to do so.

The term \web agent" is typically used to refer to a mobile agent, a process that

moves freely through a network by running on di�erent host machines. The major

problem for mobile agent architectures is the creation of a secure framework that

will allow agents to move to di�erent processors without endangering the processors

or the agent. Secure frameworks have been proposed [20], and examples have been

implemented [101]. The Java programming language, which is supported by most web

browsers, provides security by eliminating pointers, peforming byte-code veri�cation,

and forcing untrusted code to run in a protected environment or \sandbox" [34, p. 7].

Although Java protects processors from agents, it does not protect agents, which may

need to include sensitive information, such as a person's medical history, or shopping

preferences.

The term \web agent" also refers to client-side tools for helping people access

web information. For example, Letizia is an \autonomous interface agent" that mon-

itors a user's web browsing activity, pre-fetches pages that are reachable from the

browser's current page, and, when asked, is able to suggest pages that are likely to

be interesting to the user [55].

31

The term agent is also used for several programs with considerably less intelli-

gence. For example, o�ine agents, such as FreeLoader, WebWhacker, and WebCom-

pass, fetch groups of connected web pages and store them on the user's local disk

where they can be browsed o�ine. O�ine agents typically edit the pages they copy

so that links reference other local copies wherever possible. By supporting access

to groups of connected pages, o�ine agents expand the granularity of web access.

WebCompass also acts as a personal database that indexes and clusters pages using

textual similarity metrics [99]. Personal indexes of relevant information may be a

good idea, but it seems unwise to maintain a database of web sites on a person's local

disk when a proxy server can perform this function more e�ciently.

Mandala's design allows local copies to be temporarily cached by a proxy server

(see Chapter 5). Using a proxy server also promotes sharing of cached resources. Once

a resource is removed from the cache, only meta-information about it is stored, such

as its URL, associated web page, or thumbnail. Like Letizia, Mandala also monitors

a user's web-browsing activity and pre-fetches pages, but Mandala lets users select

relevant images instead of trying to guess which pages are likely to be interesting (see

Section 8.10).

2.12 VRML: The Web as a Virtual World

VRML is a language for de�ning three-dimensional virtual worlds that can be accessed

over the web. VRML worlds may be populated by animating three-dimensional ob-

jects. The objects may also be interactive. Selecting a VRML object may teleport

the viewer to a di�erent location or an entirely di�erent world.

VRML systems seem to have focused on navigation and simulation, instead

of providing advanced facilities for organizing information. As Mallen points out,

VR seems more focused on the photorealistic simulation of reality through computer

graphics than with the simulation of complexity (e.g., statistical data visualization)

32

[61]. This conclusion is supported by recent work on interactive storytelling with VR

[76].

Another problem with many 3-D visualizations is that there is no way to see

the entire world at once. VRML, and most other 3-D technologies, transform 3-D

models onto a 2-D picture plane by using a perspective projection with a single �xed

viewpoint. Objects obscure each other, and it is di�cult to see more than a �xed

angle of view. These problems are addressed by modifying object parameters (e.g.,

changing transparency dynamically) and by widening virtual viewing angles (e.g.,

QuickTime VR's panoramic movies).

There are no technical reasons why a future Mandala client could not be imple-

mented in VRML. VRML supports texture-mapping of images onto objects. Texture-

mapping could be used to position images on walls within a VRML world. VRML

also supports billboards, which are two-dimensional objects that reorient themselves

to be perpendicular to the user's angle of view automatically. Texture mapping and

billboards o�er intriguing possibilities for integrating visual representations within

3-D environments. The historical success of the mnemonic technique invented by

Simonides suggests that people may bene�t from storing information in a 3-D virtual

world composed of spaces �lled with image representations (see Section 3.13).

2.13 Visual Information Systems: The Web as an

Image Database

Visual information systems allow people to access large databases of images. Most

visual information systems index images and support visual queries (i.e., the system

will return images that are similar to a given input image or sketch) [54]. Images

are indexed in two ways: 1) textually, by identifying (or generating) associated key

words for each image, and 2) by extracting features from the image data using various

computer vision techniques.

33

For example, Interpix Software has a product called Image Surfer, which is used

by Lycos, Yahoo!, and Infoseek. Image Surfer categorizes images from web pages and

lets people browse through categories of images and their associated web sites. Image

Surfer also lets people perform key-word searches over the images. Because it supports

browsing by category, Image Surfer similar to a taxonomy, but with selectable images

instead of textually-labeled hyper-links. As with a taxonomy, new images must be

categorized or associated with searchable key words, and it may be di�cult to locate

information that falls outside the categorization scheme.

WebSEEk is an e�ort to catalog web images and video based on features and

textures that are recognized automatically [93]. WebSEEk has so far cataloged over

650,000 images and videos from many sites on the web. Given a relevant image,

images with similar features can be accessed quickly. For example, using an image

of a pink amingo as a query retrieved images of the milky way, a solar eclipse, and

polychlorinated biphenyls. Here image similarity is based on similar color and texture

distributions, not necessarily on what people would consider similar content.

Image Surfer and WebSEEk seem typical of previous approaches to organizing

image databases. Images are either clustered based on automatically-recognizable

features such as color and texture distributions or categorized by manually adding

textual labels. The former approach seems too low-level to be useful, while the latter

approach provides a more accurate assessment of image content at the expense of

manual categorization.

Mandala is less concerned with supporting visual queries through feature ex-

traction and indexing than previous visual information systems. Mandala's architec-

ture does not preclude a component for image analysis and feature extraction, but

web images are surrounded by a rich context of meta-information, which seems to

provide an ample feature set for indexing [87].

34

2.14 Summary

The original visions of hypertext were of a technology for augmenting human memory

and cognition. Relational structure was seen as a powerful organizing principal, as

were facilities for letting people organize and share relevant information. In particular,

organizing and manipulating information visually was seen as a critical feature of the

ultimate user interface for augmenting human intellect.

In practive, hypertext's relational structure facilitates browsing, but leads to

problems of spatial disorientation and cognitive overhead. Most web browsers try

to help by supplying history lists and bookmarks. Often, however, the information

relevant to a person's needs does not coincide with web page boundaries, while most

web browsers force people to access the web one page at a time.

Bookmarks, taxonomies, and search engines are technologies to help people ac-

cess information on the web by creating pages of links to related information. Book-

marks are personal and require individuals to do all the construction and maintenance.

Taxonomies are general and may not contain new and unusual links or correspond

to every individual's personal mental taxonomy. Search engines generate personal

indexes, but it is often di�cult to formulate queries that give the expected results.

Web maps may improve navigation, but they make the implicit assumption that ex-

isting hypertext structure is meaningful and relevant. Push allows for customization

of pre-structured information at the cost of enduring targeted advertisements. Agents

that are personal information gatherers represent powerful and useful technologies for

collecting and organizing textual information, but standards and platforms are still

being developed to allow agents to be autonomous as well as secure. VRML could

someday replace the textual representations of web pages with 3-D, graphical, virtual

worlds, but it remains unclear how VRML will help people organize and assimilate

information.

Visual information systems represent a departure from the traditional as-

sumption that digital information be represented textually. Most visual information

35

systems, however, have adopted textual organization strategies, such as manually-

assigned key-words or vectors of automatically-extracted features. In the next chap-

ter, several alternate visual information systems are presented, which use images to

represent information. One of these systems is Mandala { the focus of the present

dissertation.

36

Chapter 3

Image Representations: The Web

as Interactive Cinema

Most of the web technologies described in the previous chapter use textual represen-

tations to model, organize, and access information. This Chapter describes several

systems that use images to represent web pages, including Montage, the �rst version

of Mandala. In most of these systems, images are displayed in rapid succession, much

like a fast slide show or movie. The main di�erence is that each digital image is inter-

active { it can be selected to access associated information. The Mandala platform,

the subject of the present dissertation, is also introduced. Mandala allows people to

interact with hundreds of animating interactive images while they access the web with

their normal web browser. Mandala's capabilities are described by providing several

examples of how Mandala is used. Several consequences of using image represen-

tations are also described. Image representations diminish several classic hypertext

problems. Image representations may also violate authors' intentions and seem to

violate authors' rights. Finally, evidence of imagery's e�ect on human memory is pre-

sented, which indicates that people may be more e�ective at accessing and organizing

information when it is associated with images.

37

Figure 3.1: Montage with Netscape. The sphere image has just been se-

lected in Montage, signaling Netscape to display the associated web page.

3.1 Using Images to Represent Web Pages

Montage is an X Windows application that uses images from a proxy server cache for

visualizing web pages (proxy servers are described in in Chapter 5) [42]. Associations

of images to web pages are made by parsing the proxy server's log �les { images are

assumed to be associated with the closest preceding web page from the same web site.

Montage displays multiple images at the same time on 8-bit color displays by quickly

remapping their colors to use a common colormap. Colors are remapped with an error

di�usion algorithm and a very fast closest-color algorithm. Images are presented in

quick succession and at random positions. Selection of any image signals a Netscape

web browser to display the associated web page (see Figure 3.1).

New images overlap older ones so visibility indicates average recency. The

entire collection of images functions as a visual interactive overview for the content of

the web pages in the cache. Caches of web pages and images are meant to minimize

38

Figure 3.2: Visual similarity structures in Montage. The cars form a group

of similar images. The small cars form a sub-group.

access delays, but Montage reveals the cache as a community-wide resource. Like a

newspaper in an unfamiliar city, the content of the cache illustrates how a community

uses information and which information they �nd important.

Montage continues to monitor the cache, displaying new images as they are

cached. Streams of related images identify active hypertext trails (e.g., the cars in

Figure 3.2). These patterns provide interactive cues for people with shared interests.

When multiple streams of related images appear, Montage illustrates the sur�ng

behavior of a community.

The \Web Page Caricatures" of Wynblatt and Benson also use images from

web pages to represent the pages [104]. By over-emphasizing key elements of a web

page, Wynblatt and Benson convert web pages into visual representations, which are

\easily scanned" and allow people to \more quickly select the relevant documents of

interest" [104].

Two other systems also use images from web pages to represent the pages. The

PolyNav system, created by Wittenburg et. al., presents web images in quick succes-

sion and at random positions to aid in hypertext navigation [102]. The hypothesis

39

Figure 3.3: Postcard illustrating stardust.jpl.nasa.gov.

motivating PolyNav is that the rapid presentation of images can help people preview

previously-structured information. Improved previewing capabilities will help peo-

ple choose where to go next, and thereby, improve navigation. A VRML PolyNav

client plays GIF animations, MIDI and WAV audio �les, as well as AVI, MPEG, and

QuickTime movies.

The CollageMachine, created by Kerne, presents people with dynamic displays

of images and text sampled from web pages [50]. Motivated by postmodern art

methods of indeterminacy and found objects, CollageMachine provides an \evolving

art work," the goal of which is to \create a user experience of the WWW which is

both entertaining and useful" [50]. CollageMachine chooses objects to display based

on a combination of user input (selections of previous objects) and random noise

functions. While Web Page Caricatures and PolyNav are intended to help people

access previously-structured information, CollageMachine uses random juxtaposition

to help people de�ne new information structures in a manner that is both visual and

serendipitous.

The authors of all three systems note that retrieving images over the web

is slow. This problem causes Wynblatt and Benson to claim that their system is

40

\too slow for interactive use" [104]. Similarly, Kerne suggests that a collage of web

images is \an ideal way to use computing resources after initiating a search, and

while pausing to perform some other task or get a cup of co�ee" [50]. Performance

issues also cause Wittenburg et. al. to adopt \preprocessing" strategies and to suggest

server-side applications for PolyNav: \Our work is directed towards providers of Web

information who are able to select, structure, and cache images in advance in order

to support a previewing function over indexed material" [102].

Montage is able to avoid the delays associated with retrieving web images by

obtaining images from a proxy server cache. In most corporate network con�gura-

tions, the �les in a proxy server cache are accessible over a local network. Because

there are minimal delays when obtaining images from a proxy server cache, there is

little reason to limit Montage to server-side applications. The focus of Montage has

always been to function as a client-side tool for a community of end-users, readers

of web pages, who can use it to access vast amounts of information quickly and with

a minimum of cognitive overhead. Like CollageMachine, Montage displays images

outside of their intended context and uses random juxtaposition to encourage people

to identify new information structures visually. For example, the cars in Figure 3.2

represent a hypertext trail of an anonymous colleague using the cache, which is visible

as a cluster of similar images.

Unlike the other systems that use images to represent information, Montage

organizes related image representations automatically. Thumbnails of images from

the same web site can be annotated by users, positioned using a variation of a 2-D

bin-packing algorithm [23], and automatically installed as an imagemap on a web

server. These annotated imagemaps are thought of as Postcards, illustrating the web

site (see Figure 3.3). Postcards function as a visual site index { they give a visual

overview of a web site while preserving interactivity. Postcards can be shared by

sending a colleague the Postcard's new URL. Postcards are useful for illustrating web

site reviews and ratings.

41

Figure 3.4: Mandala client with six views. Each view displays the members of a di�erent

group (clockwise from lower-right): the cache group, a user's group, a visual site index for

pds.jpl.nasa.gov, the imagemap group, a visual site index for bluenote.com, and a session

history group.

3.2 Mandala

Mandala is a complete rewrite and generalization of Montage (Mandala's implementa-

tion is described in Part II). Mandala uses a special proxy server, which has extensions

for HTML parsing, allowing Mandala to determine associations more accurately than

Montage. Mandala's proxy server also has extensions for HTTP monitoring, allowing

Mandala to work with any web browsers and servers. Unlike Montage, Mandala uses

a separate image server with a fast hybrid scaling algorithm for thumbnail generation

and several layout algorithms for imagemap generation. Mandala also generalizes

Montage's image display capabilities. While Montage has two types of views (the

cache view and the web site or Postcard view), Mandala has multiple views that each

display the members of a group. Mandala builds and maintains more types of groups

42

than Montage. Mandala not only maintains a cache group and groups for each web

site, but it also maintains groups for individual browsing sessions and groups for each

of a user's bookmark categories.

Figure 3.4 is a screen-shot of a Mandala client with six views. Each view

displays the members of a di�erent Mandala group. The view in the lower-right, for

example, displays thumbnails of each image in the proxy server cache. The view in

the lower-center displays the thumbnails of a user's group. The views in the lower-

left and upper-center are groups of images from the same web site. These views

function as visual site indexes. The view in the upper left displays each Mandala

imagemap. Because each imagemap corresponds to another Mandala group, viewing

the imagemap group is a fast way to see all the other groups. The view in the upper-

right displays thumbnails of images that have been cached as a result of the user's

current browsing session.

The following sections describe Mandala's basic capabilities by providing sev-

eral examples of how Mandala is used.

3.3 Accessing Associated Information

The Mandala server builds and maintains associations of images to web page URLs.

New associations are derived from cached and bookmarked pages. Groups of associ-

ations are maintained as imagemaps.

Whenever someone double-clicks on an image in a Mandala client view, Man-

dala identi�es the web page URL associated with the selected image and signals a web

browser to display the corresponding web page (see Section 8.2 for implementation

details of Mandala's access mechanism). For example, Figure 3.5 shows the result of

double-clicking on the thumbnail of the Albanian tank cannon in the top-center of

the upper-left view { the default web browser appears, displaying the web page with

the full-sized image of the cannon.

43

Figure 3.5: Double-click on an image to access the associated information. In this case,

double-clicking on the thumbnail of Saturn in the Mandala client view (on the left) signals

the Netscape browser to display the associated web page (on the right).

44

The ability to access the information associated with any image, in any Man-

dala view, is what makes Mandala's images function as interactive representations

of associated information. This ability adds value to Mandala applications because

each image in a cache visualization, visual bookmark, and visual session history can

be used as a starting point for accessing the web.

3.4 Cache Visualization

One of the groups that Mandala builds and maintains automatically is the \cache"

group. The cache group contains a representation for each image and page in the

proxy server cache. Figure 3.6 shows a Mandala client view displaying the cache

group. As with a Montage cache view, the images are displayed with random hori-

zontal and vertical positions. Like Montage, Mandala continues to monitor the cache,

displaying thumbnails of new images as they are cached.

3.5 Browsing Session Visualization

A Mandala \session" group contains representations of web resources that have been

retrieved for web clients running on a particular machine. Session groups are named

after the client's machine. For example, in Figure 3.7, a session view is shown on

the left, for the group \tattoo.cs.unm.edu" (Netscape's web browser is shown on the

right). As a user surfs the web with the browser, the proxy server informs the Mandala

server of any newly-cached resources. The Mandala server builds new associations,

updates the session group, and informs the Mandala clients, which update any views

displaying the session group.

45

Figure 3.6: Mandala client cache view. Image position is random, but images are displayed

as they are cached so visibility indicates average recency.

46

Figure 3.7: Mandala client session view maintains a visual history while you surf. As pages

are visited in the web browser (on the right), thumbnails of the page's images appear in the

Mandala client's session view (on the left).

47

Figure 3.8: Visual site index for pds.jpl.nasa.gov. A spiral layout algorithm positions

large, colorful, square images near the center to make it easy to see most of the information

in a single glance.

48

Figure 3.9: Visual site index for www.carta.org. Another example of the spiral layout

algorithm.

49

Figure 3.10: Visual bookmark for jon/People. Multiple invocations of a spiral layout

algorithm cluster images from the same web site.

3.6 Web Site Visualization

Mandala groups representations from the same web site automatically. Representa-

tions from newly-cached pages or previously-stored imagemaps with the same host

part of their image URLs are collected in a group (which is named after the host part

of their image URL) and saved together as an imagemap. The imagemap is a visual,

interactive index for the web site. Visual site indexes archive image representations

{ they continue to grow as new parts of the web are explored. Figure 3.8 shows a

visual site index for pds.jpl.nasa.gov. In this case, the image layout is computed us-

ing a spiral algorithm, which positions large, colorful, square images near the center

(see Section 6.2). Another example of a visual site index is shown in Figure 3.9. In

general, visual site indexes atten a site's hypertext structure, allowing immediate

access to pages that may be many links from the site's main page.

50

Figure 3.11: Visual bookmark for jon/News. Another example of the double-spiral layout

algorithm clustering images from the same web site.

3.7 Bookmark Visualization

Netscape's browsers allow people to store their bookmarks in di�erent categories and

access them through hierarchical menus where each category is a separate sub-menu

(sse Section 2.6). Bookmarks and categories are stored on disk in an HTML �le.

Mandala reads a user's bookmarks �le and builds a new group for each category.

For each bookmarked page in a category, if the page can be accessed, Mandala adds

thumbnails of images from the page to the category's group. For example, Figure 3.10

shows a Mandala group corresponding to the category \People," which was created

from the bookmarks �le of user \jon." In this example the thumbnails are positioned

using multiple invocations of a spiral layout algorithm, which clusters images from

the same web site and centers the largest clusters within a larger spiral (see Section

6.2).

51

a) The thumbnail image of Sarah Vaughn is selected and

dragged to the right.

b) The thumbnail is dropped in a di�erent view causing Man-

dala to remove the associated representation from the group

shown on the left and add it to the group on the right.

Figure 3.12: Edit groups by dragging and dropping images between views.

52

3.8 Editing and De�ning Groups

People edit groups by dragging and dropping images between views. For example, in

Figure 3.12 upper left, the thumbnail image of Sarah Vaughn is selected and dragged

to the right. The result is shown in the bottom of Figure 3.12 where the Sarah Vaughn

representation has been removed from the group on the left and added to the group

on the right. Holding down the control key while dragging an image representation

into a new view causes a copy of the representation to be added to the new view's

group (see Section 8.8).

Because it is possible to see many images at once, it is also possible to recognize

patterns of similarity that segment a collection of images into groups. For example,

images of cars form a group in Figure 3.2. Images of people form a group in Figure

3.6. It is also possible to see structural relationships between and among groups

of similar images. For example, in Figure 3.2, small cars form a sub-group of the

images of cars. In Figure 3.6, images of the president form a sub-group of the images

of people. It would be di�cult to see any structural relationships if the web pages

represented by their images in Figures 3.2 and 3.6 were instead represented textually.

The same drag-and-drop facilities used to edit are used to de�ne new groups,

allowing people to share their visually-perceived groups with the system easily. For

example, if a person determined that the images of cars in Figure 3.2 formed a relevant

group, they could share the group with the system by opening a new, empty view

and dragging the car images into it.

3.9 Saving a Group as an Imagemap

People save groups as imagemaps by selecting the \save" option from the \view"

menu (see Section 8.6). For example, in Figure 3.13, a group displayed in a Mandala

client view has been saved as an imagemap, which is shown in the Netscape browser

on the right. Imagemaps provide Mandala with a persistent representation for groups

53

Figure 3.13: Save a group as an imagemap.

of selectable images that can be used in any web browser. Since an imagemap acts

as multiple selectable images that can each link to a di�erent URL, imagemaps make

it easy for people to maintain their groups in a form that preserves interactivity.

3.10 Diminishing Classic Hypertext Problems

Image representations diminish several of the classic problems identi�ed with access-

ing hypertext (see Section 2.3). Image representations change the way the web is

seen and understood, which changes the nature of reading hypertext. Because image

representations de-emphasize hypertext structure, people navigate through clusters

of similar images instead of structures of hypertext links. Images may provide better

navigational cues than textually-labeled links, because images have been shown to

improve human memory for associated information [74]. Instead of asking \where

54

am I?" and \where should I go next?" users ask \where were those pictures of ?"

Locating a familiar group of pictures is facilitated by animating displays of multiple

small images (see Section 8.5). Layouts that preserve or emphasize grouping can also

help people locate images (see Sections 6.2 and 8.4).

Trail-blazing is a representation problem that is hardly ever addressed on the

web. It is entirely up to web page authors to devise adequate representations for links

to other web pages. The trail-blazing problem may be diminished when using image

representations, because an image has the potential to provide a better indication if

a link is worth following than a brief textual label. It is also possible to pre-fetch

images to facilitate trail-blazing by illustrating hyper-links automatically (see Section

8.10).

The lack-of-closure problem and the embedded digression problem are signif-

icantly changed in systems that use image representations. Because people have a

remarkable memory for images, they can distinguish quickly between familiar and

unfamiliar images [94]. A system that uses image representations may therefore help

people identify new information, because new information will be associated with

unfamiliar images. It may also help people �nd previously accessed information, be-

cause people could remember and locate familiar images. Instead of wondering about

digressions or visited pages, users utilize their visual ability to associate images with

information. They see a familiar image and have a very good chance of recalling

the associated information. They see an unfamiliar image and wonder \what else is

associated with this strange image?"

The hypertext problem of session summarization, the inability to save the state

of a browsing session, is alleviated by storing the image representations associated

with a browsing session as an imagemap, which provides a visual session summary

that preserves the interactive nature of the browsing experience.

55

3.11 Violating the Author's Intentions

Removing images from their pages and letting people identify their own structures

may violate the intentions of web page authors and designers. This violation is in-

tentional. The similarity structures that can be visually perceived in a collage of

images will no doubt be di�erent from the structures revealed by other web tech-

nologies (e.g., the conceptual hierarchies of taxonomies, the similarity structures of

search engines, the hypertext structures depicted in web maps). Visually-perceived

structures will vary from viewer to viewer, while hypertext structures and textual

similarity structures will not. One person looking at a collage may see pictures of

buildings, but another person who knows about buildings may see one group of post-

modern buildings and another group of Greco-Roman buildings. Visually-perceived

structures depend on the viewer's past experience and would, therefore, seem to be

more relevant to the viewer than structures de�ned by taxonomy architects, textual

clustering algorithms, or web page authors.

3.12 Violating the Author's Rights

In some situations a publically viewable cache may seem like an invasion of privacy.

A publically viewable cache eliminates private sources of information, which may be

sources of power. There may also be a concern that cache visualizations might be

used to monitor the sur�ng behavior of unconsenting employees. The only basis for

this concern with Mandala is that Mandala's proxy server logs transactions. There

is no speci�c information in the log �les about individual users. There is, however, a

�eld in each log entry that identi�es the host computer that initiated each request.

Although Mirage ignores the host information, in some cases it may not be di�cult

to convert the host name to a user name. The very existence of these log �les may,

in some organizations, be considered a violation of privacy.

One consequence of Mandala's architecture is that it can avoid relying on proxy

56

server logs to associate pages with their images (as did Montage, the �rst version of

Mandala, see Section 3.1). Mandala uses the proxy server's HTML parser to identify

the image references on web pages (see Section 5.3).

3.13 Images and Memory

There is a rich history of using visual representations to augment human memory.

Imagery has been used within memory enhancing strategies dating back to at least

556-468 B.C. when a particular mnemonic process was invented by Simonides of Ceos

(according to Cicero, Quintillian, Pliny, and others). Carefully documented by Yates,

who terms it \the Art of Memory," this mnemonic process used mental images of

things in places to help orators remember long speeches [106]. Images were chosen to

evoke memories of things. The places had an associated natural linear order (i.e., a

path connecting each place) that stored the linear order of the memories. Enormous

amounts of information could be memorized and recalled in linear order by mentally

traveling along the path, allowing each place to evoke the chosen images, which in turn

evoked the next set of desired memories. Some examples of remarkable memories that

were probably enhanced by this technique (or its variations) include the elder Seneca,

a teacher of rhetoric, who could repeat two thousand names in the correct order.

Augustine tells of his friend Simplicius, who could recite Virgil backwards. Cicero

writes of Charmadas at Athens and Metrodorus of Scepsis whose memory skills were

\almost divine " [106]. Metrodorus, Yates relates, used a variation of the process

that was based on the signs of the Zodiac, an appropriate framework for organizing

information because of its natural order and associations with mythic images.

There appears to be strong scienti�c evidence to support the use of imagery

to enhance memory. Several studies in the �eld of psychology indicate that people

have an astonishingly high capacity for remembering images. For example, when

2560 photographs were shown to 21 students for 10 seconds each, performance ex-

57

ceeded 90% when, after 3 days the students were tested by showing them pairs of

photographs, one of which they had seen before, and asked to identify which image

they had seen (presentation time could be reduced to 1 second without seriously

a�ecting performance) [94].

These results were repeated on a smaller scale with children (as reported by

Kennedy):

...Ho�man (1971) presented groups of children as young as three and �ve

years old with 100 pictures and later tested them for recognition. All

the pictures were in color, and none had a single dominant object. Each

picture had as much diversity of line and color as possible. No inherently

attention-grabbing devices like letters or numbers were displayed, nor were

people shown in the pictures. Having seen 100 pictures, the children were

asked to select from 20 pairs of pictures any member of the pair that

had been shown previously. Even the three-year-olds selected 75 percent

correctly, and the �ve-year-olds scored 82 percent. [49, p. 63].

Additional studies indicate that images improve recall of word pairs, especially

images that illustrate the words interacting. For example, if subjects are trying to

remember the word pair \hammer" and \pencil," seeing (or even imagining) a picture

of a hammer hitting a pencil makes it easier to remember the word \hammer" when

presented with the word \pencil" [11, 74, 85].

The focus of much research in the psychology of imagery is to determine if

there are structural or functional di�erences in the brain for verbal and visual pro-

cesses. Memory tests are used to help determine if verbal and visual representations

are stored or accessed di�erently. Although a precise characterization of the mecha-

nisms underlying memory is not the focus of the present dissertation, the psychology

of imagery provides scienti�c evidence that visual representations are fundamental

to human memory. Visual representations, therefore, are worth exploring for use

within systems that extend human memories by helping people access and organize

information.

58

3.14 Summary

This chapter has described several systems that use images to represent web informa-

tion. One of these systems, Mandala, is the focus of the present dissertation. Most

of these systems allow the web to be accessed as a stream of images, much like a

digital video sequence or movie. Selecting any image, however, signals a web browser

to display the associated page.

The authors of some of these systems argue that image representations are

best suited to server-side applications such as previewing previously-structured infor-

mation because of the delays associated with retrieving images over the web.

The Montage system avoids retrieval delays by obtaining images from a proxy

server cache. Montage is a client-side tool to help people identify patterns of relevant

information on the web with minimal cognitive overhead.

Mandala, which is an improved version of Montage, also uses a proxy server and

is also able to avoid retrieval delays for cache visualizations. Mandala has additional

capabilities for organizing groups of images and their associated web pages. Mandala

groups images from categories of bookmarked pages, from the same web site, and

from the same browsing session. Mandala uses spiral layout algorithms to visually

cluster related images. In some cases retrieval delays are unavoidable, such as when

accessing images referenced by pages in a user's bookmarks �le. In most other cases,

however, a fast image scaling algorithm and a dynamic view updating policy allow

Mandala to function as a client-side tool with minimal delays.

Several consequences of using image representations have also been described.

Image representations diminish classic hypertext problems. A small image can store

more information than a small string of text and therefore has the opportunity to pro-

vide a more evocative representation for associated information. People also group

similar images visually. Visually-de�ned groups of image representations will vary

with each person's particular experience and current task. Visually-de�ned groups

may therefore be more relevant for people than pre-de�ned hypertext structure. Inter-

59

acting with groups of images shifts the activity of information access from the logical

untangling of hypertext structure to a more direct mode of visual sense-making that

makes better use of human visual memory and pattern-recognition skills.

Image representations also violate authors' intentions (and may seem to violate

author's rights) by providing a powerful technology for readers to re-interpret the web

according to their own needs. Readers need such tools because although the web is

dynamic and chaotic, most web technologies are designed to help web page authors

and web site publishers. When it comes to making sense out of the web, readers are

own their own.

Finally, the profound e�ect of imagery on human memory has been described.

People cannot only remember a lot of images, they can also use images to help

them remember associated information. Because images are such e�ective cues for

memory, people may be more e�ective at accessing and organizing information when

it is represented by images.

60

Part II

A Platform for Using Image

Representations

61

Chapter 4

Introduction: System Architecture

4.1 Technical Challenges

Creating a system that uses images to represent web information requires overcoming

several technical challenges. Additional challenges must be overcome in attempt to

support Mandala's particular purposes (see Section 1.3). Mandala's technical chal-

lenges are as follows:

1. How to best support digital image compression, decompression, scaling, group-

ing, and layout?

2. How to allow people to interact with the web in their normal fashion, with their

familiar web browsers, in real time or with minimal noticeable delay?

3. How to build associations between images and the web pages that they repre-

sent?

4. How to group associations in meaningful ways?

5. How to display multiple, selectable images so people can identify groups of

similar images quickly and easily?

6. How to let people share their visually-identi�ed groups with the system?

7. How to let people edit, save, and revisit groups of images?

8. How to visualize a cache, web site, and bookmarks �le?

62

An additional technical challenge was to write as much of Mandala in Java as

possible, as an experiment to see if Java was up to the task.

The technical challenges listed above have been addressed by Mandala's modu-

lar design, which provides a exible and general platform for future visual information

research on the web.

4.2 Modular Design

Given a wide range of technical challenges, it is not obvious how to begin designing

a system. Mandala's design began in a bottom-up manner by exploring di�erent

possibilities for overcoming one of the most signi�cant challenges, number 2, allowing

people to interact with the web in their normal fashion.

One possibility would be to adapt the source code for the most popular web

browser, but it is rarely clear which web browser is most popular. Modifying source

code also has the drawback that modi�cations must be made to each new release of

the browser's code.

A more general possibility would be to use a modi�ed proxy server. A proxy

server operates at the level of the HTTP protocol. Situated between web servers and

web browsers, proxy servers forward client requests on to servers and forward server

responses back to clients. A proxy server could be modi�ed to send summaries of

HTTP tra�c to separate applications (e.g., Mandala). Using a proxy server meets

challenge 2 by allowing people to interact with the web in their normal fashion,

because people are free to use their favorite web browser or switch browsers at any

time. A proxy server could also be modi�ed to describe its cache, making it possible

to visualize the cache and thereby helping to meet challenge 8. Finally, a proxy

server could also be modi�ed to parse HTML. For example, by identifying each image

reference on a web page, a proxy server could help meet challenge 3.

Building a visual information system around a proxy server has many archi-

63

tectural advantages. Using a proxy server simpli�es the system because no other

system component interacts with the web. Isolating web interaction to one compo-

nent has security advantages when the proxy server is run as part of a �rewall [56, p.

5]. The proxy server also caches images and therefore provides essential performance

improvements for any system that needs to access web images repeatedly.

Mandala uses a special proxy server, Mirage, which was written entirely in

Java. In retrospect, it may have been wiser to modify an existing proxy server, such

as Squid [77], which is designed for very fast response time. Implementing a new

proxy server, however, provided an opportunity to learn as much as possible about

HTTP and proxy servers. Mirage is described further in Chapter 5.

Mirage is useful by itself. It has been used as a caching HTTP proxy server

for the University of New Mexico's Computer Science community since September

1998. Mirage is also useful in conjunction with other systems. It can be used as

a component of any application that requires HTML parsing or HTTP monitoring

capabilities. For example, Mirage is used as a component of PadPrints, a research

project at the University of California, San Diego. Mirage monitors a user's requests

and informs PadPrints when and how to update its hypertext map of the user's

browsing history [44].

Once it was decided to use a proxy server to help meet technical challenges 2,

3, and 8, the rest of Mandala's design began to fall into place.

The second major design decision was to support the image handling functions

of challenge 1 (compression, decompression, scaling, etc.) with a second server com-

ponent written in C. Reasons for writing the image server in C include the absence of

GIF and JPEG image compression facilities in Java and the poor reliability of image

decompression facilities in Java. By contrast, C code for GIF and JPEG compres-

sion and decompression is publically available and reliable. The speed of compiled

C is also an advantage for any process that needs to manipulate many large images.

Because Imago runs as a self-contained server, its implementation language has no

64

Figure 4.1: Mandala's component structure.

e�ect on any other part of the system.

The third major design decision was to meet challenges 5-8 by client processes

that support various graphical interfaces and a�ord various interaction modalities.

As separate processes, Mandala clients can exist in di�erent environments enabling

di�erent capabilities. A Mandala client in the form of a Java applet might be ap-

propriate for very simple applications, such as monitoring a cache, while a Pad++

Mandala client would be more appropriate to explore visual, multi-scale organiza-

tion strategies (Pad++ is a sophisticated programming environment, which supports

image scaling) [6].

The fourth major design decision was to meet the remaining challenge, 3, with

a �nal separate process: a Mandala server. The Mandala server provides a single

point of contact for each of the clients. Having a single Mandala server also allows

people to share their associations, groups, and imagemaps.

Mandala's component structure is shown if Figure 4.1. Splitting Mandala into

components has many other obvious advantages (e.g., each component can run on

a separate processor, components can be developed and debugged independently,

components can be re-used in other systems, components can be substituted with

65

others that provide the same programming interface).

The Mandala components are subject to various run-time constraints (indi-

cated by light grey rectangular boundaries in Figure 4.1), which were also a factor

in Mandala's modular design. When the Mandala client is implemented as a Java

applet, the Mandala server must run on the same machine as the web server due to

security restrictions.1 The image server must be able to write images in the �le sys-

tem served by the web server. This constraint implies that the image server run on a

machine that mounts the web server's �le system with \write" permission. The proxy

server must be able to read and write its cache. If Mandala were written as a mono-

lithic application, it would be subject to each of the run-time constraints. Because

Mandala is implemented as separate components, each constraint can be satis�ed by

a single component, freeing most of the components from most of the constraints.

For consistency, Mandala components communicate by reading and writing

HTTP-like messages { messages with ASCII headers and either ASCII or binary

data. Web images, for example, consist of an ASCII header followed by binary image

data. Reading such a message consists of reading lines of ASCII characters, until a

blank line is reached, which signals the end of the header. The binary image data can

then be read in large blocks. Interestingly, reading a binary message with an ASCII

header amounts to mixing bu�ered I/O and unbu�ered I/O. Bu�ered I/O is typically

used to read lines of ASCII, while unbu�ered I/O is typically used to read blocks of

binary data.

The DataInputStream class in Java 1.0 read HTTP-like messages quite easily

by calling its readLine() method to read lines of ASCII and then calling its read()

method to read blocks of data. Unfortunately, Java 1.1 deprecated the DataInput-

Stream's readLine() method and replaced it with a readLine() method in the

Bu�eredReader class, which converts 8-bit bytes into 16-bit characters in the name of

internationalization. Doubling the size of each byte makes sense when the bytes are

1One way around this constraint is to run a local \stub server" on the same machine as the web

server and have the stub server forward requests to the Mandala server.

66

to be interpreted as text (all Java text strings use 16-bit characters), but not when

the bytes are to be interpreted as binary data. A new ByteInputStream class had to

be written to read HTTP messages. It reads from an unbu�ered FilterInputStream

and uses an internal bu�er to support reading lines of ASCII via a readLine()

method. When its read() method is called, if there is any valid data in the internal

bu�er, it is returned. Otherwise, the FilterInputStream.read() method is called

to read and return bytes without bu�ering.

Mandala has been fully implemented. Mandala's architecture allows it to func-

tion in multiple ways (e.g., as a GUI for organizing and maintaining information

represented by images, a visual bookmark facility, an imagemap editor, a cache visu-

alization tool, a visual look-ahead cache).

Mandala's architecture also supports collaboration. Multiple Mandala users

can take advantage of each other's browsing activity by viewing each other's thumb-

nails from the proxy server cache. They can also take advantage of each other's group

de�nitions by viewing each other's imagemaps. Imagemaps are useful for saving and

sharing interactive visual summaries of any set of URLs. This design is e�cient for

users, who can easily share the product of each other's work. The design is also

e�cient for Mandala and the web, because it promotes accessing locally-cached re-

sources, which can be provided quickly, without increasing web tra�c.

This chapter has been an overview of the technical challenges posed by Mandala

and how they were met by a modular design. The following chapters describe the

functions of each Mandala component in greater detail.

67

Chapter 5

Mirage: Mandala's Proxy Server

This chapter describes the reasons for using and extending a proxy server. Mandala's

proxy server, Mirage, is described, as are several issues related to the implementation

of Mirage's cache and Mirage's extensions for monitoring HTTP and parsing HTML.

Details related to using Mirage are also described.

A proxy server is a program that sits between web servers and web browsers

or other web clients. Requests are copied from the clients to the servers. Responses

(or errors) are copied back to the clients. There are several compelling reasons for

using a proxy server.

Proxy servers were originally developed to run on �rewall machines so people on

a LAN or intranet could surf the web while maintaining a measure of security[57, Sec.

1.1]. Proxy servers are also useful for monitoring HTTP requests and responses. For

example, proxy servers can be used to prevent children from accessing unauthorized

sites or to �lter out advertisements from retrieved pages.

Not long after they were deployed on the web, proxy servers were extended to

cache web resources (mostly HTML pages and images) by copying them to a local

disk. Caching increases a proxy server's value to its community of users: if someone

requests a resource that happens to be in the cache (a cache hit), it can be copied

over the local network without having to connect to the remote server and copy the

68

resource over the web. The percentage of requests satis�ed out of the cache is called

the cache hit-rate. Cache hit-rates have been measured between 30-50% [1, 39]. These

measurements indicate that resources are requested repeatedly and caching is worth

the trouble. The time spent waiting for a response to a request (i.e., the latency), is

reduced when requests are satis�ed from the cache. Similarly, the overall bandwidth

of the web is increased, because fewer resources are copied over the web. Access to

web resources is increased, because if the remote server is inaccessible, requests can

still be satis�ed out of the cache. Proxy caching can save more disk space than client

caching, because only one copy of popular resources is saved. A caching proxy server

also saves money { the entire country of New Zealand surfs the web through proxy

servers primarily to save money on long-distance connection charges [69].

Several researchers have argued that extended proxy servers are valuable tools

for supporting a wide range of web utilities and applications. In 1995 extended proxy

servers were considered to be HTTP Stream Transducers, because they modify in-

formation within the network, adding value by changing the information to a more

suitable form (e.g., �ltering out advertisements, �ltering out images for bandwidth-

limited clients)[13]. More recently, proxy servers have been considered to be Interme-

diaries for producing and manipulating web content in a variety of applications (e.g.,

personal history managers, cookie managers)[5].

A number of proxy server extensions have been implemented. Some extensions

store and organize the history of a series of browsing sessions to enrich the brows-

ing experience, such as annotation servers, full text indexers, and subject-matter

indexers[5, 13, 27]. Other proxy server extensions curtail the browsing experience.

Commercial proxy servers, used by internet service providers, have been extended to

�lter objectionable web sites as a service for parents[46]. These various extensions

indicate the exibility and power of a system architecture for web research that uses

a proxy server.

Mandala's Proxy Server is called Mirage, as a reminder that the cache is just

69

request: argument: description:

APPLICATION - register as an application connection

ANCHOR FILTER web page URL return link references

FRAME FILTER web page URL return frame references

IMAGE FILTER web page URL return image references

TITLE FILTER web page URL return page title

DUMP CACHE - return ASCII cache listing

HTML CACHE SUMMARY - return HTML list of freshest resources

Table 5.1: Mirage's Request Interface

a representation of the web. Many researchers believe that the continued growth of

the web will not be possible without a mesh of cooperating proxy servers to minimize

latency and maximize bandwidth. When most pages are served from proxies, it may

become increasingly di�cult to know if the pages are up-to-date or even if they still

exist on the origin server. The problem of how to keep cached �les up-to-date is

discussed further in Section 5.1.1.

Mirage supports the standard HTTP requests: GET, POST, HEAD, PUT, LINK,

UNLINK, DELETE, OPTIONS, and TRACE. The most common of these is the GET request

for retrieving web resources.

Mirage's extensions are accessed through the same TCP socket interface as

the standard HTTP requests. They use the same HTTP-like messages composed of

ASCII headers with optional binary or ASCII data. Mirage's extended requests are

listed in Table 5.1. The APPLICATION request allows separate applications to monitor

HTTP tra�c (see Section 5.2). The ANCHOR FILTER, FRAME FILTER, IMAGE FILTER,

and TITLE FILTER requests are for parsing and �ltering web resources (see Section

5.3). The DUMP CACHE and HTML CACHE SUMMARY requests allow Mirage to describe

the contents of its cache.

70

5.1 Cache

Once a user's web browser is con�gured to use a proxy server, web resources will get

cached automatically. The two main problems for a caching proxy server are 1) how

to determine if a cached �le is fresh? and 2) which �les to remove when the cache gets

full? In addition, caching signi�cantly complicates the most common HTTP request:

GET. Caching also requires storing meta-data about cached �les, which complicates

the design of any platform-independent cache implementation. Mirage's solutions

to the problems of determining freshness, removing cached �les, implementing GET,

and implementing a platform-independent cache, are addressed in the following sub-

sections.

5.1.1 How Long to Cache?

Freshness of cached resources is di�cult to determine, because few servers use the

Expires HTTP header, and there is no way for a web server to inform a proxy server

when a resource has been updated [66]. When the Expires header is not used, Mirage

uses a typical hueristic, which estimates freshness time as a factor of the last-modi�ed

time [56, p. 163]. If the server does not transmit a last-modi�ed time, Mirage assigns

the resource a maximum age (the maximum age is currently set to 3 days).

The pseudo-code in Figure 5.1 sketches the implementation of a subroutine

that determines if a cached �le is stale. In this example, last checked time is the

time the �le was last checked on the original server. The last checked time starts

out being the time the �le was �rst cached, but it is updated for each conditional GET

(see Section 5.1.3, below).

The last modified time is the time the �le was last changed on the server.

This value is usually speci�ed by the web server in the �le's HTTP header as the

value of the Last Modified �eld. If the �le arrives without a Last Modified header

�eld, Mirage sets last modified time to the value of the current time. The value of

71

file is stale{

if(the file has an Expires value){

if(expires_time > time_of_request)

return false

else

return true

}

else if(the file has an Last-modified value)

freshness_time = last_modified_factor * // default 0.1

(last_checked_time - last_modified_time)

else

freshness_time = maximum_age // default: 3 days

if(last_checked_time + freshness_time >= time_of_request)

return false

else

return true

}

Figure 5.1: Pseudo-code to determine whether a �le is stale.

last modified time is updated each time the �le is copied from the server (e.g., if

a conditional GET returns the entire �le).

5.1.2 How to Uncache?

When the cache gets full, the proxy server must decide which resources to discard.

A common policy is to discard resources based on their age or recency of use. This

policy is based on the assumption that if a resource has not been requested in a long

time, it is unlikely to be requested soon. This policy is also called LRU, because

the least-recently-used resource is discarded. Some researchers have found LRU to

result in more cache hits than other approaches [80]. Another policy, called size, is to

discard the largest resource, because it will create the most free space in the cache.

An improvement over size is to discard the resource with the highest value of size*age,

where size is the �le size in bytes and age is as above. A slightly more complicated

policy takes into account the fact that, on the web, some servers may respond very

72

slowly, even if they are serving relatively small �les. This policy discards the resource

with the highest value of size*age/cost, where cost is the time needed to fetch the

document from its original web server [75].

Much work has been done evaluating the performance of proxy server caching

policies, but little of this work evaluates, or even describes, the implementation of

these policies as algorithms (e.g., [75, 80]). A natural way to implement an uncaching

algorithm is to keep an ordered list of resources, sorted by a value corresponding to

the policy's particular metric or score (e.g., size, age, size*age/cost). Once the list is

sorted, objects with the highest scores can be quickly identi�ed by consecutive entries

at one end of the list. The list takes space (list entries might be the characters of

the object's URL and its numeric score), and it also takes time to maintain as the

cache changes. When new objects are cached, their score must be calculated and

their entry must be inserted at the right position in the list. When cached objects

are accessed (e.g., a cache hit), their score must be recalculated and the �le's entry

must be removed and re-inserted.

A cache algorithm that must maintain a list may be a problem, because when

the proxy server is busy, and the cache is full, it should be able to uncache immediately,

without having to take time to calculate a score and maintain a list.1 Fortunately,

LRU has an implementation that is more e�cient in both space and time when

compared to other algorithms.

In an LRU implementation, the list entries may be sorted by increasing access

time (i.e., the time the object was last accessed). Entries at the beginning of the list

(those with the smallest access time) are the oldest and may be removed when the

cache gets full. The time required to maintain the LRU list is minimal. When a new

object is cached, its score does not need to be calculated, its position in the list does

not need to be determined, and it never needs to be inserted in the middle of a list.

Because it must be newer than the other cached �les, its entry can be appended to

1An alternative design would use a separate process or thread for uncaching, but coordinating

multiple processes could add unneeded complexity.

73

the list. For a cache hit, the object's entry must still be removed from the list, but

its score does not need to be recalculated, its new position in the list does not need

to be determined, and it never needs to be inserted in the middle of a list. Because a

cache hit changes a resource's access time to the current time, the resource must be

newer than the other cached �les, and its entry can be appended to the list. Because

there is no need to recalculate scores, there is no need to store them in the list. The

position of an item in the list is su�cient to store its relative age.

5.1.3 How to GET when Caching?

If a proxy server did not have to cache, retrieving resources would always consist of

requesting them from the associated web server (or another proxy). Caching signi�-

cantly complicates resource retrieval. For example, the decision to cache a �le usually

requires examining the characters of the requested URL and the response code, as

well as the values of several response �elds (e.g., Expires, Pragma, Cache-control).

The decision to use a cached �le usually requires the values of the Pragma and

Cache-control request �elds and the values of the Last-Modified �eld of the cached

�le (as well as, possibly, the time the cached �le was last accessed and the time its

freshness was last checked on the server).

Figure 5.2 provides a sketch of how Mirage implements GET, the most common

HTTP request. If the cached �le can be used, it must �rst be determined whether or

not it is stale (see Figure 5.1). If the cached �le is stale, its last-modi�ed time can be

checked on its associated web server by performing a \conditional GET" (see Figure

5.3).

A conditional GET request is a GET request that uses an If-Modified-Since

�eld with a value taken from the Last-Modified �eld of the cached �le. If the server

sends back a 200 Ok response, the body of the message contains the updated page

and should be copied to the client, but if the server sends back a 304 Not Modified

response, the cached �le is still fresh.

74

if(cached file exists && request permits)

if(get file from the cache)

if(cached file is stale)

conditional get

get file from server

Figure 5.2: Pseudo-code to determine how to GET a web resource.

conditional get

update header

set If-Modified-Since value to

Last-Modified value or current time // use GMT

get file from server

if(response_code == 304){ // Not-Modified

get file from cache

update cached file's Last-Checked value

}

else if(response code == 200) // Msg body is new object

read file from stream

Figure 5.3: Pseudo-code to conditionally GET a web resource.

One trick to getting web servers to respond accurately to conditional GET re-

quests is to convert the date to a �xed-width interpretation of the RFC 1123 and

RFC 822 date speci�cations [12, Sec. 5.2.14, pp. 55-56] [26, Sec. 5, p. 26]. The

date must be converted to Greenwich Mean Time, being sure to use two digits for the

month and day of the month (e.g., \02" for the second month, or day of the month,

instead of \2").

5.1.4 Cache Implementation

A major challenge for a proxy server cache design is handling meta-data for cached

resources. In particular, the �le's access time is required to implement the uncaching

algorithm described in Section 5.1.2, and the �le's last-modi�ed and last-checked

times are required to determine if the �le is stale as described in Section 5.1.1. These

75

times must be updated appropriately. For example, the �le's access time must be

updated each time it is copied out of the cache.

Storing the cached �le meta-data in a big list in memory would take up space

and require a strategy for saving it on disk. Ideally, no such list should be necessary.

In the case of access time, for example, it may be possible to use the �le's last-accessed

time as stored by the operating system. An early version of Mirage determined access

time with a C native method that called the UNIXTM stat command to obtain the

�le's UNIX access time (there is no way to obtain a �le's access time with Java!).

Unfortunately, native methods must be compiled and con�gured as shared libraries

on each platform they are to run on. This usually requires �guring out how shared

libraries work on each platform. In addition, while native methods could also be used

to obtain a UNIX �le's last-modi�ed time, the last-checked time must also be stored

to compute accurate freshness times.

To store times consistently and avoid the platform dependencies of a native

method, each cached �le in the current version of Mirage stores its last-accessed,

last-checked, and last-modi�ed times in its own header �elds. Times are converted to

Greenwich Mean Time and stored using the same �xed-width interpretation of the

RFC 1123 and RFC 822 date speci�cations as used in conditional GET requests (see

Section 5.1.3). The times are stored in �xed-width �elds, so they can be updated

without ever having to rewrite the entire �le.

One disadvantage of this approach is that when the proxy server starts, each

cached �le must be read to determine its access time. For very large caches, the

startup time can be several minutes. To minimize the agony associated with such a

long startup time, the access list is initialized in a separate Java thread. As soon as

Mirage starts, it begins honoring requests without using its cache, while the thread

initializes the access list in the background. When the thread is �nished determining

the access time of each cached �le, it sets a ag, which indicates that the cache is

ready for use.

76

The many advantages of this approach outweigh the disadvantage. The advan-

tages are that 1) no meta-data needs to be stored in a special �le, 2) all three times

are stored in a consistent manner, 3) the last-checked time is stored so Mirage can

determine freshness times more-accurately, and 4) Mirage can run on both Windows

and UNIX machines.

5.2 Monitoring Requests

The proxy server allows separate processes to monitor the access patterns of regular

web browsers. Once a process makes a socket connection to the proxy server and

identi�es itself as an application, it can read messages on the socket to determine

when other processes obtain web resources from the proxy server.

Applications connect on the same port as browsers, but send the ASCII string

"APPLICATIONnnnn" before listening. While Mirage normally closes socket connec-

tions after sending a response, an application connection is only closed when the

application disconnects.

There can be multiple applications, but Mirage currently keeps track of the

name of the requesting machine and makes the assumption that only one web browser

will be running on the requesting machine (it should probably use a real client identi�-

cation scheme, such as client-side cookies, to avoid having to make this assumption).2

Mirage writes strings on the application channel after successfully reading the

response data. For example, here is a typical line of output announcing the successful

retrieval and caching of a GIF image:

thread: Thread-1572 client: surf.cs.unm.edu url: \

http://www.metacreations.com/home_ui/mid_left_p55_on.gif type: \

image/gif rc: 200 ref: http://www.metacreations.com/ cache_status: WRITTEN

2Client-side cookies are identi�cation strings that are sent from web servers in HTTP headers,

stored in a �le on a client's disk, and sent back to web servers in the HTTP headers of each client

request.

77

error code: error type: description:

502 Bad Gateway can not write request

500 Internal Server Error can not read response

Table 5.2: Mirage's Error Interface

option: argument: type: default:

-p port int 8888

-l log directory string -

-d cache directory string -

-s cache size int 8000000

Table 5.3: Mirage's Command-Line Options

To ensure that the proxy server receives each of the web browser's requests,

the browser must be con�gured to use no other caches (e.g., by setting the size of the

browser's memory and disk caches to zero). In this way an application can monitor

a regular web browser to determine its currently viewable web page. Mandala uses

Mirage's cache monitoring extensions to build groups of associations from the same

browsing session (see Section 7.11).

5.3 Parsing HTML

The design of the HTML parser was more challenging than expected. The parser

must be able to return the text within any unpaired tag (e.g., img), as well as the

text within and between any paired tags (e.g., title). The parser must also be able to

resolve relative URLs correctly, which includes identifying and honoring any <base>

tags (which change the root of all subsequent relative URLs). In addition, the parser

must be able to identify multiple nested tags in the same pass. For example, to �nd

all image references, not only must the tags be identi�ed, but it is also useful to

determine if the tag occurs within a pair of <a> tags, indicating that the image

78

is a link to another resource. Furthermore, images can also be referenced within the

<body>, <table>, <tr>, and <td> tags. Finally, the parser must be able to handle a

wide variety of anomalies permitted by the HTML speci�cation, including 1) optional

quotation marks around URLs, 2) optional newline, linefeed, and carriage return

characters within tags and between tag pairs, and 3) a poorly-speci�ed comment

syntax.

Mandala's HTML parser borrows a design concept from Steve Uhler's HTML

displayer, which is written in Tcl and renders HTML/2.0 documents into a Tk text

widget [96]. Each time the parser is called, it returns a \chunk" consisting of a tag,

a hash table of any attribute/value pairs associated with the tag, and any text up

to the start of the next tag. To parse an entire page, the parser is called repeatedly.

This design keeps the low-level inner loop simple and general. Any support for paired

or unpaired tags must be implemented by the code that calls the parser.

Any URLs returned by the parser are �rst fully-quali�ed. For example, rela-

tive URLs with occurrences of \." and \.." are resolved; URL fragments (i.e., URL

su�xes beginning with \#") are removed; and URLs beginning with a \/" are ap-

pended to the protocol and hostname. The code for fully-qualifying URLs is complex.

Network Working Group RFC 1808 \Relative Uniform Resource Locators" section 4:

\Resolving Relative URLs" provides a seven-step recipe for the subtle code needed to

get the right answer [32]. Implementing this algorithm in Java is straightforward, but

clumsy. The exercise demonstrates that Java could bene�t from the sort of regular-

expression support found in other programming languages (e.g., Tcl/Tk, Awk, Perl,

Unix Shell).

The parser must also address the problem of parsing HTML comments. This is

complicated by the fact that although HTML comments were meant to take the form

of SGML comments, web browsers have to ignore SGML comments and devise their

own, ad hoc, HTML comment interpretation. The HTML 2.0 speci�cation states \A

comment declaration consists of `<!' followed by zero or more comments followed

79

by `>'. Each comment starts with `--' and includes text up to and including the

next occurrence of `--'. In a comment declaration, white space is allowed after each

comment, but not before the �rst comment" [8, Sec. 3.2.5]. One of the main uses

of comments in HTML, however, is to hide Javascript code, which can contain any

number of \>" and \--" substrings.

Web browsers have adopted their own strategies for parsing HTML comments.

For example, when Microsoft's HTML parser reads the string \<!--", it interprets

everything up to the next \-->" or \->" as a comment. When Netscape's parser

reads the string \<!--", it interprets everything up to the next \-->" as a comment.

If there is no next \-->" in the �le, everything up to the next \>" is interpreted

as a comment. This behavior may be useful if an author forgets to terminate a

comment, but it is an example of the sort of problem encountered when trying to

parse a dynamically-evolving language with a lenient speci�cation.

Mirage parses HTML comments by mimicking the behavior of Netscape's

parser. When Mirage's parser reads the string \<!--", everything up to the next

\-->" is copied into a bu�er. If the end of the �le is reached before reading \-->", the

parser copies the bu�er, converts it to a new input stream, and reads from the stream,

interpreting the �rst \>" as the comment terminator. Copying and converting the

bu�er to a new input stream allows the parser to handle multiple, poorly-terminated

comments.

The HTML parser is written as a set of reusable Java classes. For example, the

visual bookmarks process uses the parser classes to parse a user's bookmarks �le (see

Section 6.8). Mirage uses the parser classes to implement four new parsing services:

ANCHOR FILTER, FRAME FILTER, IMAGE FILTER, and TITLE FILTER.

The IMAGE FILTER command takes a URL as an argument, retrieves the associ-

ated resource, veri�es that it is an HTML web page (i.e., its mime-type is \text/html"),

and returns URLs of each referenced image, including images used as anchors. The

ANCHOR FILTER, FRAME FILTER, and TITLE FILTER commands work the same way,

80

returning each link, each frame reference, and the web page title, respectively.

The code for parsing HTML is complex, so keeping it in one place is very helpful

for systems and applications that need to extract information from web pages. For

example, putting parsing capabilities in the proxy server simpli�es the Mandala code.

Mandala never needs to retrieve web pages. The Mandala server builds associations

between web pages and images by issuing IMAGE FILTER requests to the proxy server.

It builds associations between web pages by issuing ANCHOR FILTER requests. In most

cases these commands are likely to be fast, because the requested web pages will

already be in the cache.

5.4 Usage Details

This section describes miscellaneous detail associated with using Mirage, such as its

log �le format, error format, and command-line options.

Although the proxy server does not log the names of users requesting web

pages, it does log a variety of information related to each request using a common

log format [98].

Normally, Mirage forwards a request from a client to a web server, and then

forwards the response back to to the client. If the web server encounters an error

while trying to service the request, Mirage forwards the error back to the client. If

Mirage has trouble communicating with a web server, however, it will generate its

own error. Mirage errors are listed in Table 5.2. Mirage generates 502 errors if it

cannot connect or write to the web server. Mirage generates 500 errors if it cannot

read the web server's response.

Mirage honors the command-line arguments listed in Table 5.3. These can be

used to modify various default con�guration parameters. The -p option speci�es the

port number that Mirage should use to listen for requests. The -l option speci�es

the directory that Mirage should use to store its log �le. The -d option speci�es the

81

directory Mirage should use to store its cache. The -s option speci�es the size of the

cache in bytes.

5.5 Summary

This chapter has described proxy servers as software components that were originally

designed to o�er a measure of security and, with the addition of large caches, have

since become useful for improving web access. In general, proxy servers increase

network bandwidth and access speeds while reducing latency and access charges.

Because proxy servers intercept HTTP tra�c between web browsers and servers, a

number of researchers recommend extending proxy servers to further improve the web

access experience.

The implementation of Mandala's proxy server, Mirage, has been described.

Proxy servers need to determine how long to cache resources, and which resources

to uncache when the cache gets full. Mirage uses standard freshness heuristics (Sec-

tion 5.1.1) and an optimized LRU uncaching algorithm (Section 5.1.2). Caching

signi�cantly complicates a proxy server's most common request { GET. The imple-

mentation of Mirage's GET request has been described, including details of imple-

menting conditional-GET (Section 5.1.3). Mirage stores various cache-related times in

the header �elds of cached �les, allowing Mirage to run on UNIX as well as Windows

machines (Section 5.1.4). Mirage's application interface allows separate applications

to monitor HTTP tra�c (Section 5.2). Mirage also parses HTML, handling a wide

range of variable syntax due, in part, to HTML's lenient speci�cation (Section 5.3).

Details were also described related to using Mirage, such as Mirage's log format,

command-line options, and errors.

82

Chapter 6

Imago: Mandala's Image Server

This chapter describes Mandala's image server, Imago, which provides services to

clients that manipulate web images. Sections are included for each of Imago's re-

quests. Imago's GET THUMB request generates thumbnails, small versions of any web

images, with a fast and accurate scaling algorithm. Imago's MAKE MAP request gener-

ates imagemaps, single images with multiple selectable areas. Imago's GET INFO re-

quest returns meta-information about images, such as an image's width, height, color

space, and number of colors. The GET MAP INFO request returns meta-information

about the imagemap's image as well as the coordinates and associated URL for each

of the imagemap's areas. The GET RATED MAPS requests returns names of highly-rated

maps, where an imagemap's rating is the average of it's thumbnails' ratings, which

are, in turn, a function of the thumbnail's area and number of colors. In addition,

Imago acts as a limited HTTP proxy; the GET command retrieves any web resource,

a capability that may simplify the design of some clients. After describing each of

Imago's requests, additional sections describe Imago's errors and command-line op-

tions. Applications that use Imago are also described, as are issues related to Imago's

implementation language.

Clients communicate with Imago through an HTTP-like protocol (requests

contain ASCII headers with optional ASCII or binary data). Like Mirage, Imago's

83

request: argument: return value:

GET THUMB image URL thumbnail URL or data

MAKE MAP map name imagemap URL or data

GET INFO image URL list of attribute/value pairs

GET MAP INFO stub name list of attribute/value pairs

GET RATED MAPS integer n �rst n map names sorted by rate

GET URL associated resource

Table 6.1: Imago's Request Interface

protocol extends HTTP by supporting additional requests (see Table 6.1). Imago's

requests take a single argument and, in most cases, consist of a two-line header (the

second line is blank and signals the end of the request; the version is optional and

typically omitted). Imago's responses consist of a two-line header (the second line is

blank) and a message body, which may be either binary image data, an ASCII list

of attribute/value pairs, or an HTTP error. Imago's requests are described in the

following sections.

6.1 GET THUMB: Thumbnail Generation

Imago creates thumbnails according to a client speci�cation, which takes the form of

a GET THUMB request. The simplest form of GET THUMB request is a URL for an input

image. For example:

GET_THUMB http://www.cs.unm.edu/~jon/test.jpg

Note that the request is two lines long. The last line is blank. This request

yields the following output (also two lines long):

GET_THUMB 200 http://www.cs.unm.edu/~jon/thumb/www.cs.unm.edu/g.100._7ejon_2ftest.jpg

Imago caches thumbnails by �rst building a new name. The new name is used

to determine if the requested thumbnail already exists. The name is built from the

84

attribute: value: description:

return bits return the thumbnail's image data

return url return the thumbnail's URL

replace create ensure thumbnail exists

replace unique store with a unique name

replace overwrite ensure updated thumbnail exists

filter none uniform point sampling with no �ltering

filter gaussian fast HDC halving, with minimal Lanczos

filter lanczos sharp, slower, for arbitrary scaling

thumb max size integer integer dimension of thumbnail's largest side

thumb min width integer lower bound on thumbnail width

thumb min height integer lower bound on thumbnail height

thumb src min width integer lower bound on input width

thumb src min height integer lower bound on input height

thumb src min colors integer lower bound on input total-colors

Table 6.2: Imago's Thumbnail Speci�cation Interface

URL of the input image, the �rst character of the �lter type (`g' in this case for the

gaussian �lter option, which is described below), and the digits of the maximum

dimension (in this case the default maximum dimension of 100 is used). If the

thumbnail does not yet exist, Imago obtains the input image, scales it to the speci�ed

maximum dimension (while maintaining its aspect ratio), and installs the result on

a local web server. Imago then returns the URL of the thumbnail to the client and

closes the client connection. The next time the thumbnail is requested, it will be

available from the local web server and will not need to be recomputed.

Clients can override the default scaling behavior by specifying the maximum

thumbnail dimension, �lter algorithm, return style (whether to return the URL or

the data), and replacement style (whether to overwrite an exiting thumbnail of the

same name or generate a new name). Additional options ignore input images that do

not meet minimal requirements for size or number of colors. Thumbnail speci�cations

are formed from combinations of the attributes and values listed in Table 6.2. For

example, the following thumbnail speci�cation speci�es several non-default options:

85

GET_THUMB http://www.christusrex.org/www1/sistine/0-A.jpg

filter: lanczos

thumb_max_size: 75

replace: overwrite

return: bits

The above speci�cation will cause Imago to shrink the input using the lanczos

�lter (described below) so that its largest dimension is 75 pixels. The overwrite

option instructs Imago to generate the thumbnail even if it already exists, while the

bits option instructs Imago to return the compressed thumbnail image data, instead

of merely the thumbnail's URL.

Imago's none �lter option scales images using the fastest and most common

algorithm: uniform point sampling. For example, if the input is four times the size

of the desired output, then the uniform sampling algorithm will select every fourth

pixel from every fourth scan line of the input.

Uniform sampling may be adequate for blurry images, but it violates sampling

theory for inputs with high frequencies. In the previous example, where the input is

four times the size of the output, patterns of light and dark in the input that alternate

at rates higher than every eighth pixel will not be sampled at a high enough frequency

and are likely to result in jagged artifacts as the high input frequencies alias to lower

frequencies in the output (see Figure 6.1.a).

Aliasing artifacts associated with uniform sampling can be minimized by ex-

panding each sampling point to a weighted sum of pixel values in the neighborhood

around each point. Sampling theory indicates that neighboring pixel values should

be weighted according to an in�nite sync function, centered at the sample point. In

practice, sync functions are approximated with �nite functions. Many di�erent �nite

functions have been proposed for approximating sync functions [95]. They are typi-

cally instantiated as a real-valued matrix, which is thought of as a weight matrix or

a �lter kernel. One typical optimization is to use �lter kernels that are separable, so

the two dimensions of the input image can be scaled in separate passes.

86

a b c

Figure 6.1: Output of scaling by a factor of 5.8 with di�erent �lters: a)

none, b) lanczos, c) gaussian.

Sampling theory dictates using kernels that are large enough to sample at twice

the rate of the highest possible input frequency. Large kernels can be accurate, but

they can also make the process of shrinking an image very slow.

For example, Imago's lanczos �lter option uses a general image rescaling al-

gorithm that creates and scales �lter kernels based on the scale factor [90].1 This

algorithm uses separable kernels and, as an additional optimization, precomputes the

kernel contributions for each row and column in advance. Despite these optimiza-

tions, however, scaling images with the lanczos option typically takes �ve to ten

times longer than uniform point sampling (the none option).

Imago's gaussian �lter option invokes a novel hybrid scaling algorithm that is

both fast and accurate. Imago uses a form of hierarchical discrete correlation (HDC)

that scales an input image by one half [16]. The HDC kernel approximates a Gaussian

function when it is applied multiple times. To scale images by arbitrary amounts,

Imago uses successive invocations of HDC and a single invocation of the general image

rescaling algorithm with the Lanczos kernel. The possible slowness of the �nal pass

is minimized, because scale factors are guaranteed to be less than one half. Scaling

1Although the underlying algorithm is general enough to use a wide range of kernels, it is currently

set to only use a Lanczos kernel.

87

images with the gaussian option typically takes only a few seconds longer than

uniform point sampling, but it produces results that are di�cult to distinguish from

the slower lanczos option.

Imago's �lter options are visually compared in Figure 6.1, which shows the

output images for an input measuring 616x877 pixels, using a scale factor of approx-

imately 5.8. Aliasing artifacts are noticeable in the result of uniform point sampling

(Figure 6.1a). While it is di�cult to distinguish di�erences in the other results, in

general the lanczos �lter makes images look very sharp because it tends to \ring"

(it passes resonant energy in its stop band), while the gaussian �lter makes images

look a little less sharp because it tends to \blur" (it does not pass enough energy in

its pass band).

6.2 MAKE MAP: Imagemap Generation

Like thumbnails, Imago creates imagemaps according to a client speci�cation (im-

agemaps are single images that act like multiple, selectable images by associating

image areas with URLs). A minimal imagemap speci�cation is a stub name for the

output and a list of URL pairs for web images and associated resources. For each

URL pair, Imago attempts to add a thumbnail of the web image to the imagemap and

store the URL of the associated resource in the imagemap's HTML �le. For example,

the following is a MAKE MAP input speci�cation:

MAKE_MAP imagemap_example

area: image=http://www.cs.unm.edu/~jon/k11thumb.gif href=http://www.cs.unm.edu/~jon/

area: image=http://www.cs.unm.edu/~jon/tophathumb2.gif href=http://www.cs.unm.edu/~jon/

area: image=http://www.cs.unm.edu/~jon/montage.thumb.jpg href=http://www.cs.unm.edu/~jon/

area: image=http://www.cs.unm.edu/~jon/montage/montage.gif href=http://www.cs.unm.edu/~jon/montage/

area: image=http://www.cs.unm.edu/~jon/mandala/image/bhutmara.100.jpg href=http://www.cs.unm.edu/~jon/

area: image=http://www.cs.unm.edu/~jon/rhianna/glasses.2.jpg href=http://www.cs.unm.edu/~jon/rhianna/rhianna2.html

area: image=http://www.cs.unm.edu/~jon/dotplot/ama.color.gif href=http://www.cs.unm.edu/~jon/dotplot/ama.html

area: image=http://www.cs.unm.edu/~jon/hansard.thumb.gif href=http://www.cs.unm.edu/~jon/

area: image=http://www.cs.unm.edu/~jon/dotplot/shake.color.gif href=http://www.cs.unm.edu/~jon/dotplot/shake.html

When the above request is submitted, Imago returns the following output:

MAKE_MAP 200 http://www.cs.unm.edu/~jon/map/imagemap_example.html

88

Figure 6.2: Imagemap computed with default parameters.

By default, the imagemap command returns the URL of a new web page that

de�nes the imagemap. In this case, the HTML code for the new web page looks like

this:

<html>

<head>

<title>imagemap_example</title>

</head>

<body bgcolor="#000000" link="#1f9d00" text="#a67e53" vlink="#4f9177">

<center>

<h1>imagemap_example</h1>

</center>

<map name="map1">

<area href="http://www.cs.unm.edu/~jon/"

image="http://www.cs.unm.edu/~jon/k11thumb.gif" coords="0,0,100,100">

<area href="http://www.cs.unm.edu/~jon/"

image="http://www.cs.unm.edu/~jon/tophathumb2.gif" coords="100,0,200,100">

<area href="http://www.cs.unm.edu/~jon/"

image="http://www.cs.unm.edu/~jon/montage.thumb.jpg" coords="200,100,300,200">

<area href="http://www.cs.unm.edu/~jon/montage/"

image="http://www.cs.unm.edu/~jon/montage/montage.gif" coords="200,207,300,293">

<area href="http://www.cs.unm.edu/~jon/"

image="http://www.cs.unm.edu/~jon/mandala/image/bhutmara.100.jpg" coords="100,100,200,200">

<area href="http://www.cs.unm.edu/~jon/rhianna/rhianna2.html"

image="http://www.cs.unm.edu/~jon/rhianna/glasses.2.jpg" coords="205,0,295,100">

<area href="http://www.cs.unm.edu/~jon/dotplot/ama.html"

image="http://www.cs.unm.edu/~jon/dotplot/ama.color.gif" coords="0,200,100,300">

89

attribute: type: description:

background color hex Color color for background

background thumb url image URL image for background

default url URL for selections o� of de�ned areas

dimensions width, height integer dimensions of imagemap

area (see below) attribute/value pairs

Table 6.3: Imago's Imagemap Speci�cation Interface (attributes with typed values)

attribute: value: description:

replace augment add areas to existing imagemap

dimension type fixed respect dimensions values

dimension type min-square use smallest possible bounding box

layout random position images randomly

layout grid center images in grid

layout spiral wrap rated images around center

layout spiral2 wrap rated images around center

layout spiral3 recursive spiral2

layout preset respect thumb coordinates

rate area-colors rating scheme for imagemap

background solid respect background color value

background tile tile with background thumb url

background center center background thumb url

Table 6.4: Imago's Imagemap Speci�cation Interface (attributes with literal values)

<area href="http://www.cs.unm.edu/~jon/"

image="http://www.cs.unm.edu/~jon/hansard.thumb.gif" coords="0,100,100,200">

<area href="http://www.cs.unm.edu/~jon/dotplot/shake.html"

image="http://www.cs.unm.edu/~jon/dotplot/shake.color.gif" coords="100,200,200,300">

</map>

</body>

</html>

The web page references the imagemap's image, imagemap example.jpg, which

is shown in Figure 6.2. The image is composed of thumbnails of each input image,

scaled to a default size (100 pixels), and organized according to the default layout

algorithm (spiral2).

The MAKE MAP request supports each of the thumbnail attributes listed in Table

90

attribute: type: description:

image text original image URL

thumb text small image URL

other text associated page URL

href text same as other

alt text comment

coords text "x,y,w,h"

max size integer maximum dimension

rate double system-computed score

Table 6.5: Imago's Area Speci�cation Interface

6.2, although they change their meaning to apply to the map as a whole. For example,

the return attribute applies to the imagemap's image data or URL. The replace

attribute applies to the imagemap's HTML �le and its image �le. The values of the

other attributes are applied to each thumbnail in the map.

The MAKE MAP request also supports the attributes listed in Tables 6.3 and 6.4.

Each area within the imagemap must be speci�ed with a separate area speci�cation,

which is formed from the attributes and values shown in Table 6.5. For example, the

following imagemap speci�cation uses the same input images as before, but speci�es

several non-default parameters. The resulting imagemap is shown in Figure 6.3.

It was created by positioning thumbnails randomly over a white background. The

thumbnails were computed using the lanczos �lter and scaled so their maximum

dimension is 75 pixels.

MAKE_MAP imagemap_example2

layout: random

filter: lanczos

thumb_max_size: 75

background_color: 0xffffff

replace: overwrite

area: image=http://www.cs.unm.edu/~jon/k11thumb.gif href=http://www.cs.unm.edu/~jon/

area: image=http://www.cs.unm.edu/~jon/tophathumb2.gif href=http://www.cs.unm.edu/~jon/

area: image=http://www.cs.unm.edu/~jon/montage.thumb.jpg href=http://www.cs.unm.edu/~jon/

area: image=http://www.cs.unm.edu/~jon/montage/montage.gif href=http://www.cs.unm.edu/~jon/montage/

area: image=http://www.cs.unm.edu/~jon/mandala/image/bhutmara.100.jpg href=http://www.cs.unm.edu/~jon/

area: image=http://www.cs.unm.edu/~jon/rhianna/glasses.2.jpg href=http://www.cs.unm.edu/~jon/rhianna/rhianna2.html

area: image=http://www.cs.unm.edu/~jon/dotplot/ama.color.gif href=http://www.cs.unm.edu/~jon/dotplot/ama.html

area: image=http://www.cs.unm.edu/~jon/hansard.thumb.gif href=http://www.cs.unm.edu/~jon/

area: image=http://www.cs.unm.edu/~jon/dotplot/shake.color.gif href=http://www.cs.unm.edu/~jon/dotplot/shake.html

91

Figure 6.3: Imagemap computed with non-default parameters.

The MAKE MAP request supports two di�erent values for the dimension type

attribute. The fixed value indicates that the integer values of the dimensions at-

tribute should be respected. The min-square value, which is the default, indicates

that the dimensions of the imagemap should be the smallest possible bounding box

of the thumbnail positions within the imagemap.

The MAKE MAP request supports six di�erent values for the layout attribute,

corresponding to �ve di�erent layout algorithms for positioning images { the preset

value instructs Imago not to perform a layout, but to instead honor the coordinates

speci�ed in the coords attribute of each area speci�cation.

The random value causes images to be positioned randomly. The grid value

causes Imago to position images within a square grid in which each grid box is the

size of the largest image. The spiral value causes images to be sorted (according

to the current rating scheme) and positioned in a spiral so that the highest-rated

image is in the center and the lowest-rated images are along the edges. Both the grid

and spiral algorithms can waste space when there are many small images, because

92

images are centered within grid boxes. The spiral2 algorithm is just like spiral,

but images are positioned as close together as possible.

The spiral3 algorithm partitions the area speci�cations into groups, runs the

spiral2 layout on each group, and then runs the spiral2 layout again on all the

groups keeping the thumbnails of each group together as if they were a single image.

The spiral3 algorithm is useful for displaying visual bookmarks, because it groups

thumbnails from the same web site (see Figure 3.10). Thumbnails are �rst clustered

according to the host part of their image URL. This process separates images on a

page that load from a di�erent host, which are often advertisements. Clustering can

also be determined by the �le part of each image's URL or the host part of each

area's href URL. These clustering alternatives may be more appropriate for other

applications.

The MAKE MAP request supports three di�erent values for the background at-

tribute. The solid value indicates that the background should be �lled with the solid

color speci�ed by the hex value of the background color attribute. The tile value

indicates that the image speci�ed by the background thumb url attribute should be

used to tile the background. The center value indicates that the background should

�rst be �lled with the solid color speci�ed by the hex value of the background color

attribute (if any) and then the image speci�ed by the background thumb url at-

tribute should be centered in the background.

The MAKE MAP request also supports augment as an additional value for the

replace attribute. When augment is speci�ed, Imago attempts to merge new area

speci�cations with existing ones stored in an imagemap with the same stub-name.

This capability allows imagemaps to grow. It is used by Mandala to keep groups

of image representations up-to-date. For example, when the Mandala server builds

groups of associations (between cached images and web pages) from a particular web

site, it updates the imagemap associated with the web site (i.e., the visual site index)

by using \replace: augment" in a MAKE MAP request. Mandala does not need to

93

determine if the associations already appear in the site index, because Imago deletes

duplicate associations when it merges the area speci�cations.

6.3 GET INFO: Image Meta-Data

Imago's GET INFO request takes an image URL as an argument and returns a list of

image meta-data in the form of attribute/value pairs. For example, the following is

a valid GET INFO request:

GET_INFO http://www.cs.unm.edu/~jon/mandala/image/bhutmara.75.jpg

The above request, when submitted to Imago, yields the following output:

INFO http://www.cs.unm.edu/~jon/mandala/image/bhutmara.75.jpg

Content type: image/jpeg

Content length: 12015

width: 70

height: 70

total components: 3

input color space: Y/Cb/Cr (yuv)

output color space: rgb

total colors: 16777216

transparent color: -1

interlace: false

Image meta-data is useful for clients that are not equipped to retrieve images

and read their headers.

6.4 GET MAP INFO: Imagemap Meta-Data

Imago's GET MAP INFO request takes a map stub-name as an argument. It returns a

list of attribute/value pairs just like the GET INFO request, but with additional area

speci�cations. The area speci�cations are formed from the attributes and values

shown in Table 6.5, just like the ones in the MAKE MAP request.

94

6.5 GET RATED MAPS: Image and Imagemap Rating

Imago also rates imagemaps according to a heuristic that attempts to identify images

that are most likely to represent information and least likely to be used for decoration,

navigation, or advertisement. The rating scheme is based on image meta-information,

as opposed to image content analysis. It ranks large square images with many colors

higher than small narrow images with few colors. The rate of an imagemap is the

average rate of the imagemap's thumbnails. Ratings allow clients to identify images

and imagemaps that are most likely to contain useful representations.

One possible value for such a rating scheme might be image area. Image area

expresses size, but not aspect ratio. While aspect ratio is usually considered to be

width

height
, the rating scheme does not need to distinguish between the direction of the

maximum dimension, so aspect ratio can be de�ned as:

aspect ratio =
max(width; height)

min(width; height)

Instead of using image area, Imago's rating scheme uses thumbnail area. Thumb-

nails are created by shrinking each image so its maximum dimension is a common

size, while preserving its aspect ratio. Thumbnail area can be de�ned in terms of

aspect ratio:

thumbnail area =
max dimension

2

aspect ratio

In general, for large images, one edge of their thumbnail will equal the max-

imum dimension, while the other edge will be smaller. Thumbnails of large square

images (i.e., that have an aspect ratio of one) will have the maximum thumbnail area,

which is equal to the maximum dimension squared. Images with aspect ratios that

approach one will have thumbnail areas that approach the maximum, while images

with aspect ratios less than one will have thumbnail areas that are less than the

maximum. In other words, thumbnail area expresses aspect ratio.

95

In some cases, for images that are too small to require a thumbnail, both

dimensions may be less than the maximum. The \thumbnail area" of these small

images is taken to be their image area, which is always less than that of any actual

thumbnail. To some extent, then, thumbnail area also expresses size.

Imago's rating scheme multiplies the thumbnail area times the percentage of

colors used in the image, out of the maximum possible number of colors:

rate = thumb area �
total colors

MAX COLORS
� 100

The maximum possible number of colors is taken to be 16,777,216, the total

number of di�erent colors that may be stored by the JPEG image �le format. Color

JPEG images are assumed to have 16,777,216 colors. Greyscale JPEG images are

assumed to have 256 colors. The total colors used for GIF images is obtained by

reading the image's header.

Imago's rating scheme is a very crude estimate of the amount of possible infor-

mation in the image. It has a number of problems. To begin with, an image's number

of possible di�erent colors cannot be larger than its area { only a very large JPEG

image can actually have 16,777,216 di�erent colors. Another problem is the abrupt

discontinuity between images that are just small enough not to require a thumbnail

and all larger images. Images that are just small enough not to require a thumbnail

may be over-rated. Imago is not limited to the current rating scheme, however. As

with layout algorithms, additional rating schemes can be implemented and included

within Imago as time permits.

6.6 GET

Imago's GET request are simply forwarded to the web server speci�ed in the request's

URL. Results (or errors) are forwarded back to clients. The GET request is o�ered

as a convenience for Imago clients. It may simplify the design of clients that require

96

option: argument: type: default:

-i port int 6666

-P proxy host string -

-p proxy port int 8888

-d server disk dir string -

-u server URL dir string -

Table 6.6: Imago's Command-Line Options and Arguments

limited web access, because they need only connect to Imago instead of multiple,

remote servers.

6.7 Usage Details

This section describes Imago's command-line options and errors. Command-line op-

tions are used to initialize Imago. Under certain conditions, Imago generates errors.

The form of of the errors, and the conditions that cause them are also described.

Imago honors the command-line options listed in Table 6.6. Options are listed

together with the expected type of their arguments, and their default values, if any.

The values of the arguments determine Imago's behavior. The -i option speci�es the

port number that Imago should use to listen for requests. The -P option speci�es

the host name of a machine running a proxy server. The -p option speci�es the

port number that Imago should use to connect to the proxy server. The -d option

speci�es the full path name of a directory where Imago should store its thumbnails

and imagemaps. If this directory is exported by a web server, the -u option speci�es

the directory's fully-quali�ed URL path.

Imago generates errors as HTTP messages with HTML data. For example, the

query \GET INFO http://www.cs.unm.edu/foo.jpgnnnn" yields the following error:

HTTP/1.1 404 Not Found

Date: Mon, 15 Mar 1999 21:47:09 GMT

Server: Apache/1.3.0 (Unix)

97

Connection: close

Content-Type: text/html

Last-modified: Mon, 15 Mar 1999 21:38:20 GMT

Last-checked: Mon, 15 Mar 1999 21:38:20 GMT

Last-accessed: Mon, 15 Mar 1999 21:38:20 GMT

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<HTML><HEAD>

<TITLE>404 Not Found</TITLE>

</HEAD><BODY>

<H1>Not Found</H1>

The requested URL /foo.jpg was not found on this server.<P>

</BODY></HTML>

Imago generates additional errors as shown in Table 6.7. Errors with a 400

code are generated if Imago is issued an unrecognized request or if a request had

trouble obtaining memory or opening �les. The MAKE MAP request generates an error

with a 400 code if no areas are speci�ed or if each area speci�cation fails.

The other requests generate errors for problems related to single images. Errors

with a 406 code are generated for images that do not meet the thumb src min width,

thumb src min height, or thumb src min colors requirements. Errors with a 406

code are also generated for images with extreme aspect ratios that, once scaled,

would not meet the thumb min width and thumb min height requirements. Errors

with a 414 code are generated when requests include URLs that are longer than 1024

characters. Errors with a 500 code are generated when Imago cannot connect to the

proxy server or cannot decompress an image. Errors with a 501 code are generated

for requests that specify images stored in unsupported formats (only GIF and JPG

formats are supported).

6.8 Applications

Imago can be used as a component of any system that requires image thumbnails,

imagemaps, or image meta-data. Imago is used as a component of Cospace, a research

98

error code: error type: description:

400 Bad Request bad request, can not read �les

406 Not Acceptable image too small

414 Request-URI Too Long requested URL too long

500 Internal Server Error can not get or decompress image

501 Not Implemented unsupported �le type requested

Table 6.7: Imago's Error Interface

project at AT&T Labs that uses imagemaps as texture-maps to cover the walls of

automatically-generated VRML worlds [92].

Imago is also used by Mandala's Bookmarks process to build imagemaps of

thumbnails from each bookmarked page. Special diagnostic thumbnails are used for

pages that are inaccessible or that have no images (clusters of diagnostic images

are visible in the lower left corners of Figures 3.10 and 3.11). Since the diagnostic

thumbnails are linked to the bookmarked page in the imagemap, they serve as useful

indicators of broken links.

Imago is also used at the University of California, San Diego, to improve the

quality of thumbnail images used in PadPrints [44] and Pad++ [6].

In addition, Imago has been used through a telnet interface, by administrators

of the University of New Mexico Computer Science Department's web site, to make

thumbnails of portraits for the faculty and graduate student web pages. The telnet

program provides a simple socket interface, which connects to a server, copies any

typed text to the server, and prints server responses on the screen.

6.9 Implementation

While the other Mandala components are written in Java, Imago is written in C,

for reasons of speed and reliability. Imago uses publicly available C code: libjpeg,

JPEG software from the Independent JPEG Group [45], and gd, GIF software from

99

boutell.com [10]. These libraries support both reading and writing GIF and JPG

images, while the Java classes support only reading GIF and JPG images. The C code

is also relatively robust compared to the Java decompression classes, which frequently

throw undocumented exceptions when trying to read GIF or JPG variations that they

do not fully support. The C code is not perfect (several problems have been �xed in

gd), but at least problems can be �xed, because the code is available in source-code

form, unlike the Java classes, which are only available in byte-compiled form. The

C code also makes it possible to read header information from images; image header

information is hidden by the Java image classes.

Imago has been tested on SGI systems running IRIX 6.5 and Sun systems

running SunOS 4.1.4 and Solaris 5.5. Imago has also been extensively tested with

Purify, a run-time error and memory leak detection tool from Rational Software [84].

6.10 Summary

This chapter has described Mandala's image server, Imago. Imago's client interface

has been described as have each of Imago's requests. Imago uses a fast and accurate

scaling algorithm, which combines repeated fast halving with a single invocation of a

slower, more general, scaling algorithm (Section 6.1). Imago uses multiple layout al-

gorithms to position thumbnails in imagemaps (Section 6.2). Spiral layout algorithms

position the highest rated images near the center (spiral and spiral2). Another al-

gorithm (spiral3) divides the thumbnails into clusters, uses a spiral layout algorithm

to position the thumbnails within each cluster, and then uses the spiral layout al-

gorithm again to position the clusters within a larger spiral. Imago also returns

meta-information about images (Section 6.3) and imagemaps (Section 6.4), and rates

images as a function of their thumbnail area and number of colors (Section 6.5). Ap-

plications that use Imago have been described (Section 6.8), as have issues related to

Imago's implementation language (Section 6.9).

100

Chapter 7

Mandala Server

The Mandala server manages three main types of abstract objects:

Group: A set of associations.

Association: Part representation and part list of URLs.

Representation: A text string or URL.

The Mandala server builds and maintains groups of associations. An associa-

tion consists of a representation and one or more URLs { links to associated infor-

mation. A representation may be a text string (e.g., a web page title) or the URL of

a web-accessible image. The Mandala server gets associations from any previously-

stored imagemaps and builds new associations from the proxy server's cached pages.

The Mandala server groups associations in several ways and builds imagemaps of the

groups.

The Mandala server also supports multiple Mandala clients, manages their

requests, and stores their associations and group de�nitions as imagemaps on a web

server. The Mandala server's client interface is shown in Table 7.1. The requests

are described in the immediately following sections. The remainder of this chapter

describes how the Mandala server builds associations, groups, and imagemaps. The

101

request: argument: return value:

GET GROUPS user name group speci�cations

GET DATA association id image data

GET INFO association id attribute/value pairs

MAKE MAP group name status

GROUP (see below) -

SELECTION association id -

DISCONNECT - -

Table 7.1: The Mandala Server's Client Interface

method used to monitor the proxy server is described, as is the server's procedure for

managing multiple clients. Miscellaneous usage details are also described.

7.1 GET GROUPS: Group Data

When clients start, they issue a GET GROUPS request to the Mandala server, which

returns a summary of its group database. The following is an example of a result

from a GET GROUPS request:

GROUP 200 new groups follow

add 9 io.womanonfire.com site 110 111

add 10 www.sonymusic.com site 113 114 115 116 117 118 119 120 121 122

add 11 www.inkblotmagazine.com site 124 125 126 127 128

add 0 text_only system 1612 1683 1796

add 100 jon/new_groupX user

The general form of each line of the message body is:

add group id group name group type member id 1 ... member id n

7.2 GET DATA: Image Data

Before Mandala clients can display images, they need to obtain the image data from

the Mandala server by issuing a GET DATA request. The response header for a typical

102

GET DATA request is shown below (the binary image data, which follows the header,

is omitted). On the �rst line of the response, the second token is the representation

id; the third token is the representation type (either map or image).

DATA 260 map

Date: Thu, 25 Feb 1999 22:37:26 GMT

Server: Apache/1.3.0 (Unix)

Last-Modified: Thu, 25 Feb 1999 22:37:09 GMT

ETag: "cfc9a-2db73-36d5d095"

Accept-Ranges: bytes

Content-Length: 187251

Connection: close

Content-Type: image/jpeg

Last-checked: Thu, 25 Feb 1999 22:28:39 GMT

Last-accessed: Thu, 25 Feb 1999 22:28:39 GMT

Content-Location: http://www.cs.unm.edu/~jon/map/www.entropy8.com.jpg

Content-Length: 187251

Referer: http://www.cs.unm.edu/~jon/map/www.entropy8.com.html

7.3 GET INFO: Image and Imagemap Meta-Data

Mandala clients use the GET INFO request to obtain meta-information about images

and imagemaps. Meta-information about imagemaps is used to split an imagemap

into its individual thumbnails (this trick assumes the imagemap has been stored using

a non-overlapping layout).

The GET INFO request is handled by �rst using the argument to determine

the representation and its type. If information is requested for an image, Mandala

issues a GET INFO request to Imago. If information is requested for an imagemap,

Mandala issues a GET MAP INFO request to Imago. Mandala takes the attribute/value

pairs returned from Imago, adds the representation's id, image URL, and associated

URLs, and then passes the result back to the client.

103

7.4 MAKE MAP: Imagemap Generation

Mandala clients use the MAKE MAP request to save groups of image representations as

imagemaps. The MAKE MAP request is a minimal imagemap speci�cation, in which one

line indicates the desired dimensions and the other lines indicate the association id

and position of each thumbnail. The Mandala server converts the client's minimal

imagemap speci�cation into one that can be sent to Imago by specifying the layout

type as preset, the thumb max size as 75 pixels, the �lter as gaussian, and the

dimension type as �xed. Lines that start with \position:" are converted to area

speci�cations by replacing the word \position:" with \area:" and converting the

association id to values for the image and other attributes.

Imago attempts to build the imagemap, store it in a web server's export direc-

tory, and return the new URL to the Mandala server (see Section 6.2). If imago was

successful, the Mandala server generates the HTML client-side imagemap and stores

it in the web server's export directory. The Mandala server returns Imago's status to

the client in the form shown below. Errors take the same form, but substitute 204

for 200.

MAP 200 group_name

7.5 GROUP: Group Editing

The GROUP request is used by clients to add, copy, and edit groups of associations.

Each line in a GROUP request is a separate operation of the form shown in Table 7.2.

For example if a person using a Mandala client wishes to copy group 10 and its �ve

members (associations 13, 4, 1234, 89, and 12) to a new group named \jon/Paco",

the client sends the following GROUP request:

GROUP 200 edit

copy 10 jon/Paco

104

operation: id: arg1 arg2 additional args

add group id group name group type members

add member group id group name member 1 members

remove member group id group name member 1 members

copy group id new group name - -

Table 7.2: The Mandala Server's GROUP Request Interface

The Mandala server's response is shown below. Note that the response is itself

another GROUP request (as is the response to the GET GROUPS request in Section 7.1),

because the Mandala server and clients share the same parser for GROUP requests.

GROUP 200 new

add 9178 jon/Paco user 13 4 1234 89 12

Mandala clients send GROUP requests that use the add member and remove member

operations when people edit groups by dragging and dropping image representations

between client windows.

7.6 SELECTION

The SELECTION request signals the Mandala server that a person has double-clicked

on a representation in a client. No response is generated. The Mandala server logs

each selection.

7.7 DISCONNECT

The DISCONNECT request is used when a client exits, freeing resources on the Mandala

server. It is especially useful when debugging for terminating a telnet session.

105

7.8 Building Associations

When the Mandala server starts, it issues a GET RATED MAPS request to Imago to

determine the highest-rated imagemaps. Each imagemap is a source of previously-

stored associations.

To �nd the associations, the Mandala server issues a GET MAP INFO request for

each imagemap. Each area speci�cation in the response (i.e., each line that starts with

\area:") that has values for the href and image attributes contains an association.

After reading any existing imagemaps, Mandala also builds associations from

cached resources. Mandala issues a DUMP CACHE request to the proxy server, Mirage.

For each cached page, Mandala issues an IMAGE FILTER request to Mirage. Mirage

returns a list of URLs of images that would appear on the page in a web browser and

an indication if any of the images are links to additional URLs. Mandala preserves

image links by building an association of the image to the other URL. To ensure

that each cached page is represented by at least one of its images, Mandala always

associates the �rst image on the page with that page. Any remaining images on the

page are associated with the page unless the image is a link to another URL, in which

case the image is associated with the URL.

Mandala also builds associations from newly-cached resources. When a web

browser loads a new page, it makes additional requests for any inline images. When

requesting inline images, most web browsers identify the referring web page in the

value of a Referrer header in the HTTP request.

As the proxy server services requests, it announces its activity to application

processes (see Section 5.2). Each line of output describes a single request for a URL

and the proxy server's response. Mirage indicates the host name of the requesting

client, the requested URL, its mime type, the response code, the URL of a referrer,

and the cache activity. For each cached image, if a referrer URL is indicated, Mandala

builds a new association between the cached image and its referrer.

106

7.9 Building Groups

The Mandala server builds groups from imagemaps. When the server �rst starts and

reads imagemaps to �nd stored associations, it builds a special group called \maps."

An association is created for each imagemap and added to the group \maps." Mandala

groups have a type. The \maps" group is of type \system," because it is maintained

by the Mandala server.

A new system group is also created for each imagemap. Imagemap groups

are named after the imagemap's stub name. As associations are built from the im-

agemap's area speci�cations, they are added to the imagemap's system group.

The Mandala server also builds groups from cached resources. Cached pages

without inline images are added to a system group called \text only." For each cached

page with at least one inline image, a new \site" group is named using the host part

of the page's URL, and associations are made (between the images and the page) and

added to the site group.

Associations for newly-cached images are also added to the corresponding site

group. In addition, the Mandala server builds \session" groups for newly-cached

resources. A session group is named after the host of the proxy server client that

caused the resource to be cached.

Site groups and session groups are actually system groups, however there are

so many system groups that it is convenient to split them up into sub-groups.

Because the Mandala server maintains system groups, people cannot edit them

directly. Instead, system groups must be copied. The copies are of type \user" and

can be edited by the user who created them.

7.10 Building Imagemaps

After the Mandala server builds groups of associations, it may have to rebuild the

imagemaps of certain site groups. Imagemaps that should be rebuilt are identi�ed

107

option: type: default:

-proxy host string -

-proxy port int 8888

-server disk dir string -

-image server host string -

-image server port int 6666

Table 7.3: The Mandala Server's Command-Line Options

while building associations from cached resources. Mandala builds associations from

imagemaps before cached resources. Because Mandala does not build duplicate asso-

ciations, if a new association is built for a cached resource, it must be a new association

that is not in any imagemap. The cached resource comes from a particular web site.

If Imago has an imagemap that corresponds to the web site, the imagemap is marked

to be rebuilt. After the associations and groups are built, any marked imagemaps

are also rebuilt. Imagemaps are rebuilt by converting the new associations to area

speci�cations and issuing a MAKE MAP request to Imago. The \replace: augment"

header is speci�ed, allowing the visual site indexes to grow as new parts of the site

are explored by any member of the community.

7.11 Monitoring the Proxy Server

The Mandala server connects to Mirage as an application to be informed of newly-

cached resources (see Section 5.2). The Mandala server builds new associations for

each newly-cached image that has a Referrer �eld (see Section 7.8). A new site

group is created for the association (if necessary), and the association is added to

the site group (see Section 7.9). In addition, a new session group is created for the

association (again, if necessary) and the association is added to the session group.

Finally, clients are sent GROUP messages, so that they can update their groups and

associated views.

108

7.12 Managing Multiple Clients

The Mandala server \listens" for client connections on port 7777 and keeps a list of

each connected client process. The Mandala server sends a GROUP message to each

client whenever a new group is added (e.g., because a new session started, resources

were cached from a new site, or a client copied a group) or an existing group changes

(e.g., because an association was added or deleted), .

7.13 Usage Details

The Mandala server honors the command-line arguments listed in Table 7.3. These

arguments can be used to modify various default con�guration parameters.

When the Mandala server encounters an error while trying to service a client's

request, it replies with a 204 No Content error. For example, if a client issued a

GET DATA request and passed an invalid representation identi�er, the server would

respond:

DATA 204 No Content

Similar 204 No Content errors are generated for bad GET INFO requests or if,

for some reason, a GET GROUPS request could not be serviced.

7.14 Summary

This Chapter has described the Mandala server. The Mandala server's client requests

have each been described (Sections 7.1-7.7). In addition, the server's initialization

process has been described. The Mandala server starts by building associations from

any stored imagemaps and any images in the proxy server's cache (Section 7.8). The

Mandala server builds several groups of image representations (Section 7.9) and stores

them as imagemaps (Section 7.10). The Mandala server continues to monitor the

109

proxy server's HTTP tra�c to create groups of images cached by the same browsing

session (Section 7.11). The Mandala server also manages multiple clients, servicing

their requests, and keeping them informed as groups change (Section 7.12).

110

Chapter 8

Mandala Clients

The Mandala clients handle layout, animation, and user interactions. User inter-

actions include direct manipulation of images, saving imagemaps, and selection of

images to access associated information.

Mandala's client/server architecture can support many di�erent types of clients.

One advantage of this architecture is that clients can run on di�erent types of hard-

ware (e.g., television, touch-screen, palm-top) each with di�erent interaction capabil-

ities. One type of client has been implemented, which runs as a Java application. A

future client will run as a Java applet within Java-enabled web browsers (as shown

schematically in Figure 4.1).

Java applets, however, operate under severe security constraints. In particular,

a Java applet cannot read or write local �les, and it can only open socket connections

to the web server that served the applet's code. Because an applet cannot read or

write �les, user-de�ned objects must be stored on a server machine. Although these

security constraints apply to Java applets only, the Mandala server assumes that all

clients may be similarly challenged. Mandala clients need only one connection to the

Mandala server. Also, Mandala clients do not need to write any �les, because the

Mandala server handles saving associations, groups, and imagemaps.

This chapter begins by explaining how any Mandala client communicates with

111

a Mandala server and signals a web browser to display web pages. Next, several

issues related to the current Mandala client's graphical interface are introduced. In

particular, reasons are provided for why each client view works the same way. View

options for layout and animation of image representations are described as is the

view menu interface. The implementation of image repositioning and drag-and-drop

capabilities are outlined. In addition, the procedure for updating views dynamically

is described as is the function of a view as a visual look-ahead cache.

8.1 Communicating with a Mandala Server

Current Mandala clients communicate over a single connection to the Mandala server.

The connection is established when the client starts. It should stay open as long as

the client is running. Because the connection stays open, a sender must indicate

where in the data stream a message ends by specifying the message's length in its

header.

Mandala clients read messages that take the form of the requests listed in Table

8.1. Note, however, that these messages are not requests for information from the

client. Consequently, no response is given or expected. Rather, these messages are

responses from the Mandala server. They contain information that was previously

requested by the client.

An earlier version of the Mandala client attempted to read messages in a low-

priority thread, but it was still easy for a server to send so much data to the client

that the client refused to reply to normal input events. Thread priority seems to be

honored di�erently on di�erent implementations of Java.

In an attempt to prevent the Mandala server from overloading its clients, the

following transmission policies are enforced: 1) a client must speci�cally ask for indi-

vidual resources, and 2) unsolicited messages sent from the server to the client must

be brief. For example, when a Mandala client starts, it issues a GET GROUPS request

112

request: argument1: argument2:

DATA representation id -

INFO return code representation id

GROUP return code -

MAP return code -

Table 8.1: The Mandala Client's Message Interface

to the Mandala server. The server responds with a GROUP message containing the

server's group database (see Section 7.1). To display a new image representation, a

client would issue a GET DATA request to the server, which would later respond with a

DATA message containing the compressed image data (see Section 7.2). A client that

needed additional information about a representation would issue a GET INFO request

to the server. The server would later respond with an INFO message containing im-

age or imagemap meta-data in a list of attribute/value pairs (see Section 7.3). MAP

messages are also sent by the server to indicate the status of a previous MAKE MAP

request (see Section 7.4). The only unsolicited messages sent by the server are GROUP

messages, which indicate that the corresponding view (if any) should be updated (see

Section 8.9).

8.2 Accessing Associated Information

Each selectable object displayed in a Mandala client has a unique identi�er. When

the object is selected, the Mandala client sends the identi�er to the Mandala server

as an argument to a SELECTION request so the server can log the selection.

Applet clients can drive the web browser to a new page with the showDocument

method of the AppletContext interface. Application clients may require platform-

dependent code to signal web browsers to load a new page. Most web browsers allow

separate application programs to control some of their behavior through an API.

The Mosaic web browser, for example, can be controlled through a TCP/IP socket

113

interface [68].

Unfortunately, Netscape's web browsers cannot be controlled through a socket

interface. Netscape's browsers run on three di�erent operating systems and have

four di�erent APIs. The UNIX API requires application programs to send it X

Events { an inter-process communication scheme that requires using the X Window

System. The Macintosh API requires application programs to send it Apple Events.

The Windows API requires application programs to send it DDE (Dynamic Data

Exchange) messages or OLE2 (object linking and embedding) object methods.

Netscape's multiple APIs are a problem for application clients. Although

Java is designed to be platform-independent, Java applications that need to con-

trol Netscape must use the API that corresponds to their current environment. This

means that the Java applications need to include platform-dependent code for each

supported platform. They need to determine their current environment at runtime

to execute the appropriate platform-dependent code.

For example, on a UNIX platform, the Java code invokes the runtime's exec()

method, which invokes the openURL() method of the Netscape browser's -remote

option, passing the address of the associated URL as an argument. The openURL()

method identi�es an instance of the browser running on the X server and signals it

to display the resource with an X Event.

On a Windows platform, the Java code invokes the runtime's exec() method,

which invokes a small C program that calls the Microsoft Foundation Class ShellExecute()

method, specifying the \open" option and passing the address of the associated URL

as an argument. The ShellExecute() method is a handy way to avoid DDE or OLE2.

Once it identi�es the argument as a URL from its \.html" extension, ShellExecute()

signals the Windows default web browser (presumably with a DDE or OLE2 message)

to retrieve and display the associated web resource.

114

8.3 View Uniformity in the Graphical Interface

Mandala clients interact with people through a graphical interface. The major chal-

lenges of the graphical interface are 1) to let people display hundreds of images in

ways that let them identify groups of similar images easily and 2) to let people share

their visually-identi�ed groups with the system easily.

One reason ease-of-use is di�cult to achieve is that Java and most other graph-

ical interface toolkits make it easy to build interfaces in which the initial view behaves

di�erently than subsequent views. In most graphical interface toolkits, a reference to

an existing window is a required argument for many common operations. In Java, for

example, before a process can decompress an image, it needs to establish a window on

the screen. Because many applications have initialization constraints of their own, it

is usually simplest for designers to make the initial view be the application's \main"

view. Unfortunately for users, this means there are at least two di�erent types of user

interface objects to learn how to use, because the main view behaves di�erently than

the other views. In many applications, for example, when the main view is closed, the

application exits, while the other views can be opened and closed without side-e�ects.

By carefully examining initialization constraints, current Mandala clients are

designed so that each view, even the initial view, runs the same code. Each view has

an initial splash screen. While the client displays the initial splash view, it obtains

group de�nitions from the server. Each view has the same con�guration of menu

options (see Section 8.6), group label, display area, current association label, and

pause/run toggle (see Figure 1.1 and most of the �gures in Chapter 3). Each view

displays the members of a group. Di�erent types of groups may be used for di�erent

purposes, but these di�erences are not reected in the user interface. Keeping the

user interface consistent makes the system easy for people to learn to use, and easy

to remember how to use, because each view works exactly the same way.

115

8.4 Layout

Layout is the process of determining a position within the display window for each

selectable object. Although animation can also be used to display selectable objects

(see the next section), layout is useful for archiving and static displays, which cannot

overlap without sacri�cing visibility. For the purpose of layout, each selectable object

in Mandala is modeled as a rectangle with the dimensions of the associated image or

text. Mandala clients support three layout algorithms: random, tiled, and centered.

Layout algorithms are speci�ed in the \view options" dialog, which is accessed by

selecting options on the View menu (see Section 8.6).

The random algorithm positions images randomly, but subject to the constraint

that images be completely visible within the display window (see Figures 3.6, 3.2, and

3.7). The random algorithm does not prevent images from overlapping, so it is most

useful when combined with cycling animation (as described in the next section).

The tile layout algorithm is a variant of o�ine 2-D bin-packing algorithms,

which minimize total area without overlapping [23]. The tile algorithm sorts rectan-

gles by height. Then it positions them from left to right across the top of the view. If

there are too many rectangles to �t across the view, it positions them in successively

lower horizontal strips. If there are too many rectangles to �t in the entire view, the

tile algorithm starts positioning them across the top again, overlapping the tallest

images. The tile algorithm is most useful for applications that wish to minimize

overlapping and maximize visibility.

Layout algorithms are either o�ine (requiring the complete set of objects in

advance) or online (able to position objects incrementally). The random algorithm is

an example of an online layout algorithm. It is useful when the complete set of objects

can not be known in advance (e.g., for monitoring a cache or browsing session). The

tile layout algorithm is an example of an o�ine layout algorithm, because it needs to

start by sorting the rectangles by height. It is useful for positioning the members of

small user-de�ned groups before storing them as imagemaps.

116

The centered option centers each representation in the middle of the view.

The centered option, obviously a simple layout algorithm, is useful for groups of large

images when combined with cycling animation. The centered option is the default

layout for a group of imagemaps.

Although Mandala clients support only three layout algorithms, they honor the

area coordinates of imagemaps, allowing them to take advantage of Imago's layout al-

gorithms (e.g., gird, spiral, spiral2, etc.) for archived groups of image representations

(see Section 6.2).

8.5 Animation

Mandala clients use a very primitive sort of animation to allow people to see more

images than will �t on the screen at once. Images are displayed by a separate thread,

the Displayer, which repeatedly displays images from a list. If the image has no coor-

dinates, the Displayer computes them based on the view's current layout algorithm.

When the Displayer reaches the end of its list, it continues displaying from the be-

ginning again. This sort of animation has little e�ect when all group members can

�t in a view without overlapping. However, for large groups that cannot �t in a view

without overlapping, the Displayer allows each image to be seen repeatedly.

Mandala clients provide a single toggle button for pausing the animation and

restarting it.

8.6 Menu Interface

Mandala clients have a menu interface that lets people manipulate views, obtain meta-

information about a representation, and terminate the client. Items from the View

menu are shown in Table 8.2. Selecting \open" lets people open a new view, which

displays the members of any group (the group's name is selected from a scrolling

117

menu item: result:

open select from group list

new new, empty user group

options edit view options

text toggle view to text mode

save save current view as imagemap

clear clear member coordinates

close close view

Table 8.2: The Mandala Client's View Menu Interface

list). Selecting \new" creates a new group that appears as an empty view. Select-

ing \options" lets people switch the layout algorithm for positioning members (see

Section 8.4). Selecting \text" toggles the view to stop displaying images, and in-

stead, displays the group as a scrolling list of textual representations (see Figure 1.1).

Selecting \save" lets people save a group as an imagemap. To save a group, the

Mandala client uses the members of the view's current group to generate a list of

association ids and coordinates, which it sends to the server as a MAKE MAP request

(see Section 7.4). Selecting \clear" clears each member's coordinates, which will

be recalculated according to the current layout algorithm as the displayer runs (see

Section 8.5). Selecting \close" closes the view.

8.7 Using Direct Manipulation to Edit Imagemaps

Current Mandala clients are designed so that people can select and drag images to

reposition them within a view. This capability is useful for rearranging portions of

an imagemap.

When a person clicks the mouse, the client determines which image was selected

by comparing the mouse coordinates with the bounding box of each image. Because

image may overlap, they must be checked in the inverse of their display order. If the

view is animating, its Displayer is �rst paused (see Section 8.5). The selected image

118

is erased from the display by clearing its area to the background color and redrawing

the parts of any images that overlap the area. The newly-drawn area, which had been

obscured by the image, is saved, and then the image is drawn again on the display.

As a person drags the mouse, the client cycles through the following actions: 1) it

determines the new position of the dragged image from the mouse coordinates, 2) it

erases the image in its old position by drawing the saved background over it, 3) it

saves the background area that will be obscured by the new position of the dragged

image, 4) it draws the image in its new position, and 5) it updates the display. To

avoid icker, the computer graphics technique of double-bu�ering is used { drawing

occurs in an o�-screen image, and the display is not updated between erasing the old

image and drawing the new one.

8.8 Using Direct Manipulation to Edit Groups

Current Mandala clients are designed so that people can drag-and-drop images be-

tween views. This capability is useful for editing groups (see Figure 3.12). In particu-

lar, because people can drag-and-drop images into a new, empty group, this capability

is useful for sharing visually-identi�ed groups with the system. It should be easy to

learn, because dragging-and-dropping is an action supported by most graphical user

interfaces. In addition, since dragging-and-dropping is almost the same action as

dragging, which is used to reposition images within a view, using drag-and-drop ac-

tions to edit groups keeps the user interface consistent.

Although drag-and-drop capabilities are supported in the next version of Java

[22, pp. 339-340], in an e�ort to make Mandala clients immediately useful on a wide

range of platforms, drag-and-drop capabilities were implemented in Java 1.1. In

order for drag-and-drop to work, the Java runtime environment needs to generate

WINDOW ENTERED events, when the mouse is pressed.1

1The drag-and-drop capabilities do not work on SGI machines because the IRIX JDK does not

generate WINDOW ENTERED events when a mouse button is pressed.

119

When a user drags an image over a new view, a WINDOW ENTERED event

is generated, signaling the client to begin dragging the image in the new view. When

a user drops an image, a MOUSE RELEASED event is generated. If the group

displayed in the view where the mouse was pressed (the source view) is the same as

the group displayed in the view where the mouse is released (the destination view),

no group editing occurs.

If the group displayed in the source view is di�erent than the group displayed in

the destination view, the following actions occur. If the destination view is animating,

it is paused. If the source view is displaying a group of type system, it cannot be

edited directly, so the dragged image is returned to its original position in the source

view. If the user was not holding down the control key while dragging the mouse,

they are prompted with a dialog box, asking if they would like to copy the group

displayed in the source view. Holding down the control key allows people to copy

image representations from any group. If the destination view is displaying a group

of type system, it cannot be edited directly, so the dragged image is returned to its

original position in the source view, and the user is prompted with a dialog box, asking

if they would like to copy the group displayed in the destination view. Otherwise, the

image representation is added to the group displayed in the destination view. If the

source view is not displaying a system group, the image representation is removed

from the group displayed in the source view. The client then sends the server GROUP

requests to indicate that the user has edited their groups.

8.9 Updating Views

When a Mandala client starts, it �rst interprets any command-line options. The

command-line options are listed in Table 8.3. These can be used to modify various

default con�guration parameters. The group option is used to specify the initial group

that the client should display. By default, Mandala clients display the group maps.

120

option: type: default:

-server host string -

-server port int 7777

-group string maps

Table 8.3: Mandala Client's Command-Line Options

The server host option is used to specify the host name of the machine running

the Mandala server. The server port option is used to specify the port number on

the server host to use, when connecting to the Mandala server. By default, Mandala

clients attempt to connect on port 7777.

After processing any command-line arguments, a Mandala client makes its

�rst view and obtains some utility images, one of which it displays as its splash

screen. While the splash screen is being displayed, the client creates a RepManager

class, which will keep track of requesting and decompressing representations from

the Mandala server. The client then connects to the server and issues a GET GROUPS

request. After getting the groups database, it removes the splash screen and switches

the view to display the initial group, which is, by default, the group of imagemaps.

The client's main thread then enters a loop (a.k.a. the client's main loop), where it

repeatedly waits for and services messages from the Mandala server.

Displaying the group of imagemaps is handled the same way as any other group

of representations. The initial view is handled in the same way as any other view. In

fact, the code for obtaining representations and updating views works the same way

for each view and for each type of group.

When a view is �rst created, it displays its splash screen and calls the RepMan-

ager's maybe get reps from map() method to see if it should obtain any representa-

tions from an imagemap. If the view's group name corresponds to a local imagemap

and thumbnails have not yet been extracted from the imagemap, then the RepMan-

ager submits a GET INFO request to the server, passing the group's id as an argument.

121

If no GET INFO request is sent, the view removes the splash screen and displays the

group of representations as described below.

On the other hand, if a GET INFO request is sent, control returns to the client's

main loop, while the view continues to display the splash screen. The server's response

arrives in the form of an INFO message, which is handled by the main loop. The main

loop processes the message like any other message of type INFO. It builds a hashtable

of the attribute/value pairs and parses any area speci�cations. Each INFO message

includes, in its header, a representation id. If the representation is of type \map" (as

it is in this case), then the client checks each of its views to see if any are displaying

a splash screen. If the client �nds a view displaying a splash screen and the view's

group name matches the representation's name, then the client converts each area

speci�cation into a new representation by copying the corresponding area from the

imagemap into a new thumbnail. Each new representation is registered with the

RepManager. The view then removes the splash screen and displays the group of

representations.

A view displays a group of representations by �rst calling the RepManager's

get existing reps() method. If any members of the group have already been de-

compressed, the RepManager copies their references to the view's display list, and

the Displayer displays them immediately.

Any members of the group that have not yet been requested are identi�ed, re-

quested, and displayed by a variation of Java's Observer/Observable protocol. In the

normal version of the protocol, the Java Observer interface implements an update()

method. An Observable object extends the Observable class, which keeps a list of

Observers and an internal ag. The Observable's setChanged() method marks the

internal ag as having changed. The Observable'snotifyObservers() method calls

each Observer's update() method if the internal ag has changed.

In the Mandala client, each view implements an Observer interface, and each

group extends the Observable class. As the Displayer loops through the representa-

122

tions, it calls the notifyObservers() method of the view's group. If there are more

group members to request, the notifyObservers() method calls the view's update()

method, which �nds an unrequested representation and requests it from the server.

The server's response arrives in the form of a DATA message, which is processed by

the client's main loop. The main loop processes the message in the same way that it

processes any other message of type DATA. The client reads and decompresses the data

and converts it into a new representation. It then signals the RepManager that the

representation arrived. Finally, the client checks each view to see if the representation

belongs to its group. If it does, the representation is added to the view's display list,

and the Displayer displays it immediately.

The view-updating process may seem complex, but it allows views to be up-

dated as groups change. When the client processes a GROUP message that indicates a

group should change, it calls the appropriate group method. For example, if a GROUP

message indicates that a new member should be added to a group, the client calls the

group's addMember() method. Because the group is an Observable, the addMember()

method calls setChanged(), which marks the Observable's internal ag as having

changed and calls the view's update() method. The update() method obtains the

representation and displays it as described above.

The ability to update views dynamically allows Mandala clients to function

as dynamic cache visualizations, sessions histories, and look-ahead caches. It also

allows people to share their new imagemaps, because each time a person saves a new

imagemap, the Mandala server adds it to the maps group and updates the clients as

described above.

In addition to updating views dynamically, the client's view-updating process

encourages representations to be requested one at a time. This allows requests from

multiple client views to be interleaved, so multiple views can be updating at once.

In addition, because there is a short delay between client requests, there is also a

short delay between server responses. This is important for the client's main loop,

123

which processes incoming messages, as well as user input. User interactions remain

responsive when messages from the server are short and intermittent.

8.10 Session Groups as a Look-Ahead Cache

The Mandala server can tell which web page was most-recently requested in a brows-

ing session by monitoring the proxy server's application channel. The Mandala server

can also tell which web pages are one link away from the current page by issuing a

ANCHOR FILTER request to the proxy server with the current page as an argument.

Additional IMAGE FILTER requests indicate those images on pages that are one link

away from the current page. By displaying these images in a client's session view,

Mandala session groups can function as a visual look-ahead cache.

A visual look-ahead cache may be particularly useful when used in combination

with a search engine. For example, after querying a search engine in a web browser,

the search engine returns a web page listing the query results in textual form. Usually

the web pages that match the query are displayed with their titles, URLs, and a short

summary of text from the page. It is often di�cult to determine which of the query

results are relevant, because the textual representations must be read iteratively,

they may be redundant, and the hyper-links to them may be broken (search engine

problems are reviewed in Section 2.8).

By contrast, when selectable images from the pages that match a query are

displayed, it may be much easier to determine which of the query results are relevant.

Relevant images have a good chance of corresponding to relevant pages. It should

also be easier to identify relevant images in a large collage than to identify relevant

textual links in a large page of text.

Mandala's look-ahead cache has another advantage. In some sense, a very

general way to form groups of indexed information is to use a query language. Query

languages identify the subset or group of information that matches the query. A

124

general way to let people de�ne groups of images, therefore, would be to incorporate

a query language into the Mandala server. But when Mandala is used as a look-ahead

cache, any web search engine's query language can be used to de�ne groups. Not only

is this more general than using a single query language, but it also has the advantage

that Mandala needs no explicit code for supporting query languages.

8.11 Summary

This chapter has described how Mandala's client/server architecture supports mul-

tiple clients with di�erent capabilities. Each client must adhere to the protocol de-

scribed in Section 8.1. Clients must connect to a Mandala server and send it requests

of the form shown in Table 7.1, to which the server responds with messages of the

form shown in Table 8.1. Details have been provided for how to signal web browsers

to display web pages, which should also be useful for future Mandala clients (Section

8.2).

The remainder of the chapter described how the current Mandala client works.

The current client runs as a Java application on a range of platforms. The client sup-

ports multiple views that each work the same way { each view displays the members

of a group of image representations (Section 8.3). View uniformity makes the client

easy for people to learn to use. The layout and animation settings, which are used

by views to display images, have been described (Sections 8.4 and 8.5). Each view

has the same menu interface, which is described in Section 8.6. Each view has the

same drag-and-drop facilities, which let people edit imagemaps and groups (Sections

8.7 and 8.8). Finally, each view implements the same dynamic updating procedure

(Section 8.9). Dynamic view updating allows people to use image representations to

monitor caches and histories. The use of dynamic view updating for implementing a

visual look-ahead cache has also been described (Section 8.10).

125

Part III

Future Directions for Image

Representations

126

Chapter 9

Future Work

This dissertation focused on creating a platform for supporting the investigation of

image representations and their visual organization. One way to measure the success

of a system is by the number of ideas it inspires for future work. Although a few

applications of image representations have been explored, there is much more work to

be done. This chapter describes future extensions for the Mandala system, several of

the many possible directions for future research, and possible experiments to evaluate

the utility of image representations for access and organization of web information.

9.1 Future Extensions

There are many possible future extensions to the current Mandala system. It would be

particularly interesting to devise more ways to group representations automatically.

One possibility would be to extend the proxy server to build full-text indexes of

retrieved pages incrementally and group representations based on the similarity of

their associated text. Another possibility would be to group images based on a

person's interaction history with them. For example, by grouping representations

from commonly accessed paths of hyper-links.

While Mandala has so far focused only on two-dimensional groupings of image

127

representations, images can also be grouped in time. Mandala client views have a

\centered" layout option, which centers images in the view while it cycles through

them { much like a slide-show. It would be useful to explore further options for

displaying groups as animating cycles of centered images. Particular orderings may

be more useful than others. Groups could be stored as a single GIF89 animation,

although they would lose much of the interactivity a�orded by an imagemap repre-

sentation.

There are several basic improvements planned for the current Mandala client.

Although double-bu�ering is used to prevent ickering, images still appear to \pop

on" the screen abruptly. Allowing images to dissolve on to the screen would be much

more aesthetically pleasing. Currently, people can save groups as imagemaps, but

the imagemap dimensions are taken to be the size of the group's view. It would

be better to allow people to sweep a box to specify the imagemap's dimensions.

Also, the number and type of layout algorithms on the client are limited. It would

be convenient to include a version of the image server's spiral layout algorithm on

the client. It would also be convenient to provide a method for allowing people's

manually-positioned representations to be aligned to a grid.

There are a large number of digital video �les on the web. It would be very

interesting to extend a Mandala client to let people access and organize video repre-

sentations.

9.2 Possible Directions

One possible future direction would be to implement additional Mandala clients. An

applet client has long been planned. A single applet client might be a good way to

monitor a single session group. Multiple applets per page might even allow people

to edit groups without leaving their browser. A pad++ client would be useful for

exploring multi-scale aspects of layout and grouping by piling (instead of using a

128

separate window for each group). A VRML client would be useful for exploring

whether or not positioning images in a 3-D environment truly helps people remember

more information.

While Mandala has focused thus far only on visualizing web images, one pos-

sible future direction would be to attempt to build an audio browser to help people

hear web audio �les. Imagery and audio have a large number of commonalities. As

with images, people learn from audio and are comfortable using audio to interact

with technology. Digital audio representations are less e�cient than digital textual

representations. Audio, particularly music, conveys a richness and depth of periph-

eral and subliminal information, which like imagery, can be appreciated immediately,

although the details may take longer to interpret. With music, multiple tracks can be

appreciated at once, although this is less possible with more symbolic audio streams,

such as conversations. Also, of course, audio has duration and requires time to be

appreciated. For these reasons audio representations may not scale as well in space

or time as image representations.

Finally, this project has focused almost exclusively on the drawbacks of tex-

tual representations and the bene�ts of image representations. This focus has al-

lowed progress to be made in the areas of user-interface design and system design

for web-based visual information systems. In practice, however, visual and textual

representations are complementary. More work needs to be done exploring di�erent

combinations of visual and textual representations and identifying applications where

the di�erent combinations would be most appropriate.

9.3 Image Representation Evaluation

Mandala provides an excellent environment for studying the utility of image repre-

sentations. The proxy server cache can be loaded with particular sets of pages before

being disconnected from the web, restricting web access and providing a controlled

129

environment for experiments.

For example, an experimenter could supply di�erent groups of people with

di�erent tools and record the time required to perform common tasks. One group

might be given only a web browser, while another might be given a web browser

with Mandala, a third might also be given a web browser and Mandala, but Mandala

would be set to use textual representations only. The tasks might include �nding

a familiar web page, �nding an unfamiliar web page in a familiar web site, �nding

an unfamiliar web page in an unfamiliar web site, browsing a web site for particular

topics, comparing two pages, or comparing two sites.

The cache size can also be varied, allowing experiments that compare repre-

sentation type as a function of available information. For example, the experiment

could be repeated using di�erent sizes of proxy server cache (e.g., 10K, 100K, 1M,

10M, 100M). It would seem from the psychological evidence presented in Section 3.13,

that while textual representations would be more e�ective for some tasks, the over-

all e�ectiveness of image representations should increase as the size of the available

information increases.

A second type of experiment might involve people's bookmarks. It would be

useful to know how well web page titles and URLs help people remember what they

have bookmarked. One possible experiment would be to show people randomly-

selected web page titles and URLs from their own bookmarks �les and ask them if

what they are seeing is familiar. Another group of subjects could be shown images

from their bookmarked pages to see if the images serve as better cues for remembering

what they bookmarked.

A third type of experiment might study how people perceive groups of images.

A survey could contain collages and questions. Some questions could be very general

(such as \Write down a description of what appears above") to determine if people

naturally see groups of similar images. Other questions could be more speci�c (such

as \Write down a description of each group of similar images that appears above")

130

to determine what sorts of structures people see in groups of images.

9.4 System Evaluation

Mandala's logging facilities can be used to help determine how people use the sys-

tem. Analysis of the Mandala server and proxy server log �les could be used to cor-

relate user activity in Mandala clients with proxy server requests from the user's web

browser. Time-stamped log entries could give an indication of the sorts of higher-level

tasks being performed by users. For example, a typical usage pattern might consist

of users performing searches in a web browser, followed immediately by organizing

images into groups and saving groups as imagemaps. Other usage patterns might

yield deeper insights into how people use Mandala.

Image representations are an engaging way for children to surf the web. In

order to determine if children prefer image representations to textual representations,

and to determine if children have additional requirements for information systems,

an informal user-study could be performed in which children using Mandala are en-

couraged to \think aloud" [73].

An online survey could also be used to solicit informal evaluations of Mandala.

There could be questions on the survey asking for speci�c evaluations of various

features of the system. There could also be general questions to help determine if

people like using the system and if people think it is useful.

131

Chapter 10

Conclusions

This dissertation begins with the observation that while people are expert at in-

terpreting and remembering images, almost all digital technologies use text to rep-

resent information. Using digital images to represent information is ine�cient for

computers, especially when compared to textual or other symbolic representations.

Nonetheless, images are very e�cient representations for humans, who can perceive

and remember many more images than words. Engelbart recognized the importance

of user-interfaces that let people represent and manipulate ideas visually; he consid-

ered \extremely sophisticated images" to be a necessary part of the ultimate interface

for augmenting human memory and intellect [30] (see also Section 2.1). As digital

storage prices decrease and network bandwidth increases, image representations be-

come an a�ordable alternative to textual representations.

As digital technologies continue to converge with visual technologies, there

will be even more visual information available and more need for people to access

and organize it e�ortlessly. Traditional approaches to organizing visual information

require the manual addition of codes or key-words, which are indexed with standard

(text-based) techniques. Automatic approaches for organizing visual information use

vectors of features, such as color or texture distributions, which are extracted from the

image data. As with text-based document feature vectors, each vector determines an

132

angle in a high-dimensional space, and the similarity of two images (or documents) is

determined by the closeness of their angles. Vector models support \visual queries,"

in which images are returned that are similar to an input image or sketch. Although

these models do succeed for restricted types of images, the features they detect are

generally poor indicators of image content for the wide variety of images on the web

(see Section 2.13).

Images from web pages are often good representations for the content of the

pages. A few systems use web images to represent web pages (see Section 3.1).

Because retrieving images over the web can be slow, most of these systems have

not been designed for real-time online use. Rather, the authors of these systems

expect that image representations will be most useful for server-side applications. For

example, on a web server, hypertext structure and associations of images to web pages

may be known in advance. It is easy, in this case, to prepare image representations in

advance, and use them to help improve navigation through the hypertext structure.

Montage uses web images to represent web pages, but avoids image retrieval

delays, and their associated server-side restrictions, by obtaining images from a proxy

server cache. Montage displays hundreds of images in a single view, making the con-

tents of the cache visible, and immediately accessible. Cache visualizations reveal

how a community uses the web and which information the community values. Cache

visualizations are also a unique way to share information anonymously within a com-

munity. Montage also creates Postcards (i.e., visual site indexes) by grouping thumb-

nails of images from the same web site and saving them as imagemaps. Postcards

can be annotated and are useful for sharing comments about web sites and providing

visual bookmarks.

Displaying images out of context may violate the intentions of web page au-

thors and publishers (see Section 3.11). Indeed, cache and web site visualizations are

powerful client-side tools. Image representations not only help people access more

information faster, they may also be able to help people see organizational patterns

133

in information by taking advantage of the human visual system's intrinsic ability to

group related visual stimuli.

A new system has been created, called Mandala, which is a complete rewrite

and generalization of Montage (see Section 3.2). Mandala is a platform for exploring

the capabilities of using images to access and organize web information. Designed as

a powerful architecture of reusable servers, Mandala is general and exible enough to

be used in a variety of di�erent ways for a variety of di�erent applications (e.g., cache

visualization, browsing session visualization, web site visualization, etc., see Chapter

4).

Mandala provides basic support for image compression, decompression, scaling,

meta-data extraction, meta-data rating, and imagemap creation, in the form of an

image server component, called Imago (see Chapter 6). Imago works with any GIF or

JPEG images on the web and can be used by any process that needs images converted

into thumbnails or organized into imagemaps. Thumbnails are created using a novel

scaling algorithm, which combines multiple invocations of a fast halving algorithm

with, at most, one invocation of a slower more-general scaling algorithm. The quality

of the resulting thumbnails rivals the results of much slower algorithms, while the

results are computed almost as quickly as scaling by uniform point sampling.

Mandala also provides basic support for monitoring HTTP tra�c, parsing

HTML, and caching resources in the form of a proxy server component, called Mirage

(see Chapter 5). Mirage responds to requests to describe its cache, which makes it

possible to create cache visualization applications.

Mandala's graphical user interface (GUI) is implemented by multiple Mandala

clients (see Chapter 8), which communicate with a single Mandala server (see Chap-

ter 7). Mandala's client/server architecture allows di�erent clients to have di�erent

capabilities. For example, fully-featured clients have been implemented as Java appli-

cations. Mandala's client/server architecture also allows clients to share information

about each other's groups and imagemaps. Mandala's GUI provides basic support

134

for displaying hundreds of images. Each image in the GUI represents an associated

web page, which can be accessed in a regular web browser by selecting the image (see

Section 8.2).

Visual representations require organizational strategies that di�er from familiar

textual lists, indexes, and hierarchies. When people can see hundreds of images at

once, they can determine visual similarity for themselves. The ability to perceive

groups of similar images easily seems to be a fundamental aspect of human vision.

Mandala is designed to exploit this human ability to perceive groups and make it easy

to share visually-identi�ed groups with the system. Each view in the GUI displays

the members of a group of image representations (see Section 8.3). People can edit

groups by dragging and dropping images between views (see Section 8.8). People can

also save groups as imagemaps. When people have an easy way to indicate, rearrange,

and save their visually-identi�ed groups, they can organize information in ways that

are meaningful and relevant to their tasks and goals.

The Mandala server creates and maintains certain types of groups, which peo-

ple can copy and edit (see Section 7.9). Images from the same web site are grouped,

as are images that were cached as a result of the same browsing session. Additional

groups are created for each category in a user's Netscape bookmarks �le, each cached

image, and each cached page that has no images. The Mandala server stores groups

as imagemaps (see Section 7.10). When the Mandala server starts, if cached images

are found that belong in a group with an existing imagemap, the imagemap is up-

dated to include thumbnails of the new images. By continually growing imagemaps,

they become a cumulative public repository. For example, the visual site indexes in

Figures 3.8 and 3.9 encourage people to explore the sites and will continue to grow

as new pages are explored.

As groups of image representations grow, they take on additional structure.

Some of these structures are easier for a person to perceive than for a machine to

determine automatically. For example, it is easy to distinguish the images of planets

135

in Figure 3.8. On the other hand, some structures may be easier for a machine to de-

termine automatically, particularly as the number of image representations increases.

For example, it is di�cult to distinguish the few paintings that were not painted by

Picasso in Figure 3.9, although it would be easy for a machine, because they are on

a di�erent web page.

When viewing structured groups of image representations, people can bene�t

from layout algorithms that preserve their structure. While the present dissertation

has explored several two-dimensional layout algorithms (e.g., random, grid, tile, spiral,

etc.), only one preserves structure by using multiple invocations of a spiral layout

algorithm (see Figures 3.10 and 3.11, as well as Section 6.2). By clustering images

from the same web site, these layouts preserve information about the image's origin,

helping people perceive higher-level patterns related to the web sites. For example,

in Figures 3.10 and 3.11, the clusters of images function as multiple mini site indexes

within a single imagemap.

In conclusion, the main contributions of this dissertation are as follows:

1. An argument for why image representations may be better suited that textual

representations for helping people access and organize relevant information on

the web.

2. An analysis of web technologies in terms of how well they help people access

and organize relevant information.

3. A platform for studying how images can help people access and organize relevant

web information.

4. A caching HTTP proxy server with extensions for describing its cache, parsing

HTML, and monitoring HTTP tra�c.

5. An image server that creates thumbnails with a unique, fast hybrid scaling

algorithm, and that creates imagemaps with spiral layout algorithms.

6. A graphical user interface that 1) allows people to perceive groups of similar

images quickly, and 2) allows people to share their visually-perceived groups

easily.

7. An argument for view consistency in user interfaces as a way to promote reuse

and ease-of-use.

136

8. A mechanism that allows animating views to update dynamically.

9. Working prototypes of several applications: a repository for visual site indexes,

a visual history facility, a visual bookmark facility, and a cache visualization

application.

10. An argument for cache visualizations as a way to increase cache hit-rates, in-

crease access to relevant resources, and increase resource sharing, while revealing

the dynamic access patterns of a community.

Although many of the techniques described in the present dissertation can be

used in server-side applications to help publishers organize information for readers,

the focus of this dissertation has been on client-side tools to help people access and

organize information for themselves. Because the web is huge, chaotic, disjointed, and

fragmented, organization strategies designed for small well-understood information

sources seem less e�ective. Human visual perception, however, is well adapted to

extracting complex information from complex images, quickly and accurately. The

manner in which people distinguish groups of images is also signi�cant { to a large

extent, people see what they want to see, what they have been conditioned to see,

and what they are looking for. Images provide a representation for information that

is therefore incredibly accurate and e�cient for helping people identify and organize

relevant information. By harnessing the intrinsic powers of human visual perception,

information systems that let people organize visual information for themselves are

powerful tools for extending human memory and intellect.

137

Appendix A

Related Systems Implemented by

the Author

Mandala has borrowed ideas from earlier systems implemented by the author. Dotplot

is a system for visualizing textual similarity structures. Ishmail is a system for reading

and classifying electronic mail. This appendix describes these earlier systems and how

they inuenced the design of Mandala.

A.1 Dotplot: Visualizing Textual Similarity

Structures

Dotplot is a data visualization system that displays string-match patterns in millions

of lines of text or code[41]. Input streams are tokenized (e.g., split into short strings by

identifying space characters or newline characters) and plotted from left to right and

top to bottom with a dot where tokens match. Various weighting and approximation

techniques are used to allow plots to be calculated fast enough for use in an interactive

browser (see Figure A.1). Dotplot's displays are interactive overviews of enormous

amounts of data. The overviews allow people to see patterns that would be di�cult,

if not impossible, to identify with other techniques.

138

For example, Figure A.1 shows three views of 3500 lines of C code. The

large window in back is an overview of the entire �le (dark areas indicate matching

lines). A black square near the middle indicates the viewing area of a detailed view

(about 330 lines), shown in the window in the upper right. A smaller black square in

the detailed view indicates the viewing area of a text view (13 lines), shown in the

bottom window. Dotplot's linked views make it easy to determine that the pattern

of shrinking diagonals in the detailed view is caused by a pattern of data structure

initializations in the code. Because this pattern spans more than 300 lines of code, it

would be di�cult to appreciate in a text editor. The pattern would also be di�cult

to identify with related techniques, such as the UNIX di� utility or algorithms that

compute longest common substrings.

Dotplot's interactive overviews are similar to Mandala's. Both present com-

pressed representations of large quantities of data in a manner that allows people to

identify high-level patterns. Both overviews are selectable to allow people to quickly

determine more-detailed information and to help interpret the cause of a pattern.

Dotplot's overviews, however, display multiple patterns of textual similarity. Mul-

tiple patterns of textual similarity form \textual similarity structures," much like

those stored in full-text indexes used by IR systems to match textual queries with

documents (see Section 2.8).

A.2 Ishmail: Reading and Classifying Electronic

Mail

Ishmail is a mail reading system that helps people manage hundreds of messages a

day[43]. Unlike typical mail-reading programs, which are designed to make it easy

to read messages one at a time in the order they were received, Ishmail lets people

de�ne groups of messages (i.e., mailboxes or folders) and classi�es incoming mes-

sages into groups automatically. Grouping is a exible strategy for organization that

139

Figure A.1: Dotplot's user interface showing three views of 3500 lines of

C code. Dotplot's linked views make it easy to determine that the pattern

of shrinking diagonals in the detailed view is caused by a pattern of data

structure initializations in the code.

140

helps people understand and assimilate larger volumes of information by changing the

level of granularity from individual units (e.g., messages) to collections of units (e.g.,

mailboxes or folders). Grouping is also a natural strategy: Ishmail users had been

grouping messages manually before they switched to automatic classi�cation. It is

appropriate to automate classi�cation of messages into groups, because humans �nd

classi�cation of hundreds of messages a day time-consuming, tedious, and error-prone.

Ishmail lets people access groups through textual interactive overviews { collections

of textual summaries that can be ordered, �ltered, and selected to access the content

of the corresponding group member.

Ishmail is built on top of EMACS, a customizable text editor, and RMAIL,

the standard mail-reading client for EMACS users. Figure A.2 shows Ishmail's four

views: a message view and three interactive overviews. The message view (Figure

A.2.a) and the mailbox summary view (Figure A.2.b) comprise the standard RMAIL

user interface. The mailbox summary view is an interactive overview of the mailbox

contents: selecting any line in the mailbox summary causes the current message

window to display the corresponding message. Ishmail adds two additional interactive

overviews, the summary of mailboxes view (Figure A.2.c) and the log view (Figure

A.2.d). The summary of mailboxes view indicates the status of each mailbox, while

the log view indicates when each message arrives and which mailbox it was sorted into.

Selecting any line in the log or the summary of mailboxes views, causes the RMAIL

windows to update, displaying the associated mailbox and it's current message.

Ishmail has been in continuous use by many researchers for several years. Based

on enthusiastic user feedback, Ishmail seems to be very useful for the following reasons:

� grouping messages is a natural strategy for organizing large volumes of mail

� manual grouping of messages is tedious and error-prone

� automatic grouping of messages saves people time, is not too hard to specify,

and is accurate enough to be worthwhile

� interactive overviews at multiple levels of granularity are e�ective mechanisms

for organizing and providing access to information

141

Figure A.2: Ishmail's user interface has a) a message view and three in-

teractive overviews: b) a summary of the messages in a mailbox (bottom

window), c) a summary of the mailboxes (second window from top), and d)

a log of how each message was sorted (top window).

142

� it improves upon a system people were already using

Ishmail's success at grouping and classifying messages was one strong mo-

tivation for exploring the use of grouping and classifying image representations in

Mandala. Ishmail's use of interactive textual overviews was also a motivation for

exploring the use of interactive overviews of image representations.

143

Bibliography

[1] Marc Abrams, Charles R. Standridge, Ghaleb Abdulla, Stephen Williams, and

Edward A. Fox. Caching proxies: Limitations and potentials. In Proceed-

ings of the Fourth International World Wide Web Conference, December 1995.

http://www.w3.org/pub/Conferences/WWW4/Papers/155/.

[2] Our technology: Re�ne or cow9?, 1998. http://www.cma.ensmp.fr/cow9/ and

http://altavista.digital.com/av/content/about our technology cow9.htm.

[3] AOLPress, 1995. http://www.aolpress.com/press/2.0features.html.

[4] Apple Research. Hotsauce (previously called Project X), 1997. http://

mcf.research.apple.com/ProjectX/.

[5] Rob Barrett and Paul Maglio. Intermediaries: New places for pro-

ducing and manipulating web content. In Proceedings of the Sev-

enth International World Wide Web Conference, 1998. http://

wwwcssrv.almaden.ibm.com/wbi/www7/306.html.

[6] Ben Bederson, Jim Hollan, Ken Perlin, Jon Meyer, David Bacon, and George

Furnas. Pad++: A zoomable graphical sketchpad for exploring alternate inter-

face physics. Journal of Visual Languages and Computing, 7:3{31, 1996.

[7] Arthur Asa Berger. Seeing Is Believing: An Introduction to Visual Communi-
cation. May�eld Publishing Company, 1989.

[8] Tim Berners-Lee and D. Connolly. RFC 1866 hypertext markup language {

2.0, November 1995. ftp://ds.internic.net/rfc/rfc1866.txt.

[9] Tim Berners-Lee and R. Fielding. RFC 2396 Uniform Re-

source Indenti�ers (URI): Generic syntax, August 1998. http://

info.internet.isi.edu/in-notes/rfc/files/rfc2396.txt.

[10] T. Boutell. http://www.boutell.com/gd/.

[11] G. Bower. Analysis of a mnemonic device. American Scientist, 58:496{510,
1970.

144

[12] RFC 1123 requirements for internet hosts { application

and support, October 1989. R. Braden, editor. http://

www.kisco.co.kr/�hollobit/RFC/rfc/rfc1123.html.

[13] Charles Brooks, Murray S. Mazer, Scott Meeks, and Jim Miller. Application-

speci�c proxy servers as HTTP stream transducers. In Proceedings of the

Fourth International World Wide Web Conference, December 1995. http://

www.w3.org/pub/Conferences/WWW4/Papers/56/.

[14] Marc Brown and Robert Shillner. Deckscape: An experimental web browser.

In Proceedings of the Third International World Wide Web Conference,
April 1995. http://www.igd.fhg.de/www/www95/proceedings/papers/90/

deckscape-final-v1/paper.html.

[15] P. J. Brown. Do we need maps to navigate round hypertext documents? Elec-

tronic Publishing, 2(2), July 1989.

[16] Peter J. Burt. Fast �lter transforms for image processing. Computer Graphics

and Image Processing, 16(1):20{51, 1981.

[17] Vannevar Bush. As we may think: A top U.S. scientist foresees a possible future

world in which man-made machines will start to think. LIFE, 19(11):112{124,

September 1945. Condensed from the Atlantic Monthly, July 1945.

[18] F. Campagnoni and K. Ehrlich. Information retrieval using a hypertext-based

help system. ACM Transactions on Information Systems, 7(3):271{291, July

1989.

[19] Stuart Card, George Robertson, and William York. The webbook and the

web forager: An information workspace for the world-wide web. In CHI `96

proceedings, pages 111{117, 1996.

[20] Luca Cardelli. Abstractions for mobile computation. Technical Report MSR-

TR-98-34, Microsoft Research, 1998.

[21] Lara Catledge and James Pitkow. Characterizing browsing strate-

gies in the world-wide web. In Proceedings of the Third In-

ternational World-Wide Web Conference, April 1995. http://

www.igd.fhg.de/www/www95/proceedings/papers/80/userpatterns/

UserPatterns.Paper4.formatted.html.

[22] Patrick Chan. The Java Developers Almanac 1998. Addison-Wesley, 1998.

[23] F. R. K. Chung, M. R. Garey, and D. S. Johnson. On packing two-dimensional

bins. SIAM Journal on Algebraic and Discrete Methods, 3(1):66{76, March

1982.

145

[24] Je� Conklin. A survey of hypertext. Technical Report STP-356-86, MCC,

February 1987.

[25] J. Cove and B. Walsh. Online text retrieval via browsing. Information Process-

ing and Management, 24(1):31{37, 1988.

[26] David Crocker. Rfc 822 standard for the format of arpa internet text messages,

August 1982. http://www.kisco.co.kr/�hollobit/RFC/rfc/rfc822.html.

[27] Chris Dodge, Beate Marx, and Hans Pfei�enberger. Web catalogu-

ing through cache exploitation and steps toward consistency maintenance.

In Proceedings of the Third International World-Wide Web Conference,

April 1995. http://www.igd.fhg.de/www/www95/proceedings/papers/50/

AWI Database/AWI Database.html.

[28] P. Domel. Webmap { a graphical hypertext navigation tool. In Proceedings of
the 2nd International World-Wide Web Conference, 1994.

[29] Fred Douglis, Thomas Ball, Yih-Farn Chen, and Eleftherious Koutso�ous.

Webguide: Querying and navigating changes in web repositories. In Pro-
ceedings of the Fifth International World Wide Web Conference, May 1996.

http://www5conf.inria.fr/fich html/papers/P38/Overview.html.

[30] Doug Engelbart. A conceptual framework for the augmentation of man's intel-

lect. In P. Howerton and D. Weeks, editors, Vistas in Information Handling,
volume 1. Spartan Books, 1963.

[31] Excalibur Technologies. Excalibur visual retrievalware technical summary, 1999.

http://www.excalib.com/products/vrw/vrwtechsum.html.

[32] R. Fielding. RFC 1808 relative uniform resource locators. ftp://

ds.internic.net/rfc/rfc1808.txt.

[33] R. Fielding, H. Frystyk, and T. Berners-Lee. Hypertext transfer protocol

{ HTTP/1.1, HTTP working group, internet engineering task force, 1996.

http://www.w3.org/Protocols/HTTP/1.1/spec.html.

[34] David Flanagan. Java in a Nutshell. O'Reilly, 1997.

[35] David Fontana. The Secret Language of Symbols. Chronicle Books, 1994.

[36] David A. Forsyth and Margaret M. Fleck. Identifying nude pictures. In IEEE
Workshop on the Applications of Computer Vision, pages 103{108, 1996.

[37] Carolyn Foss. Tools for reading and browsing hypertext. Information Processing
and Management, 25(4):407{418, 1989.

146

[38] George W. Furnas, Thomas K. Landauer, Louis M. Gomez, and Susan T. Du-

mais. The vocabulary problem in human-system communication. Communica-

tions of the ACM, 30(11):964{971, November 1987.

[39] Steven Glassman. A caching relay for the World Wide Web. In First

International World-Wide Web Conference, pages 69{76, May 1994. http://

www.research.digital.com/SRC/personal/Steve Glassman/CachingTheWeb/

paper.html.

[40] Frank G. Halasz, Thomas P. Moran, and Randall H. Trigg. Notecards in a

nutshell. In ACM CHI+GI '87, pages 45{52, April 1987.

[41] Jonathan Helfman. Dotplot patterns: A literal look at pattern languages.

Theory and Practice of Object Systems, Special Issue on Patterns, 2(1), 1996.
http://www.cs.unm.edu/�jon/dotplot/tapos.ps.

[42] Jonathan Helfman. Passive sur�ng in the communal cache, Febru-

ary 1996. Human Computer Interaction Consortium Workshop, http://

www.cs.unm.edu/�jon/montage/.

[43] Jonathan Helfman and Charles Isbell. Ishmail: Immediate iden-

ti�cation of important information, October 1995. http://

www.cs.unm.edu/�jon/ishmail/concepts.ps.

[44] Ron Hightower, Laura Ring, Jonathan Helfman, Ben Bederson, and Jim Hollan.

Graphical multiscale web histories: A study of PadPrints. In Hypertext '98
Proceedings, pages 58{65, 1998.

[45] Independent JPEG Group. ftp://ftp.uu.net/graphics/jpeg/.

[46] Islandnet. Web guardian, 1998. http://www.islandnet.com/guardian.html.

[47] Bela Julesz. Figure and ground perception in briey presented isopodal textures.

In Micheal Kubovy and James R. Pomerantz, editors, Perceptual Organization,

pages 27{54. Lawrence Erlbaum Associates, 1981.

[48] Carl G. Jung. Man and his Symbols. Doubleday, 1964.

[49] John M. Kennedy. A Psychology of Picture Perception: Images and Informa-

tion. Jossey-Bass Publishers, 1974.

[50] Andruid Kerne. CollageMachine: Temporality and indeterminacy in media

browsing via interface ecology. In CHI '97: Human Factors in Computing

Systems: Late-Breaking/Interactive Posters, pages 238{239. ACM Press, March

1997.

147

[51] S. Kerr. Way�nding in an electronic database: The relative importance of

navigational cues vs. mental models. Information Processing and Management,

26(4):511{523, 1990.

[52] Wolfgang K�ohler. Gestalt Psychology: An Introduction to New Concepts in

Modern Psychology. Mentor Books, 1947.

[53] Michael Lesk, Dennis Eagan, Dan Ketchum, and Carol Lochbaum. Bet-

ter things for better chemistry through multi-media, October 1992.

http://www.lesk.com/mlesk/waterloo92/w92.html.

[54] Clement H. C. Leung and W. W. S. So. Characteristics and architectural com-

ponents of visual information systems. In Clement Leung, editor, Visual Infor-

mation Systems, Lecture Notes in Computer Science 1306. Springer, 1997.

[55] Henry Lieberman. Autonomous interface agents. In Proceedings of the ACM
Conference on Computers and Human Interface, CHI `97, March 1997.

[56] Ari Luotonen. Web Proxy Servers. Prentice Hall PTR, 1998.

[57] Ari Luotonen and Kevin Altis. World-wide web proxies. In Proceedings of

the First International Conference on the World-Wide Web, WWW `94, 1994.

http://www1.cern.ch/PapersWWW94/luotonen.ps.

[58] Yoelle S. Maarek and Isreal Z. Ben Shaul. Automatically organiz-

ing bookmarks per contents. In Proceedings of the Fifth Interna-
tional World Wide Web Conference, 1996. http://www5conf.inria.fr/

fich html/papers/P37/Overview.html.

[59] Patti Maes. Agents that reduce work and information overload. Communica-
tions of the ACM, 37(7):31{40, July 1994.

[60] Patti Maes. Arti�cial life meets entertainment: Interacting with lifelike au-

tonomous agents. Communications of the ACM, Special Issue on New Horizons
of Commercial and Industrial AI, 38(11):108{114, November 1995.

[61] George Mallen. Back to the cave { cultural perspectives on virtual reality.

In M. A. Gigante, H. Jones, and Rae A. Earnshaw, editors, Virtual Reality

Systems, pages 265{272. Academic Press, June 1993.

[62] Richard Mander, Gitta Salomon, and Yin Yin Wong. A `pile' metaphor for sup-

porting casual organization of information. In CHI '92 Conference Proceedings,

pages 627{634. ACM SIGCHI, 1992.

[63] Gary Marchionini. Information Seeking in Electronic Environments. Cambridge
University Press, 1995. Cambridge Series on Human-Computer Interaction 9.

148

[64] David Marr. Vision. W. H. Freeman and Company, 1982.

[65] Miramba. Castanet, 1997. http://www.marimba.com/products/

castanet-tuner.html.

[66] J. C. Mogul. Forcing http/1.1 proxies to revalidate responses,

May 1997. http://www.es.net/pub/internet-drafts/draft-mogul-

http-revalidate-01.txt.

[67] Sougata Mukherjea and James Foley. Visualizing the world-

wide web with the navigational view builder. In Proceedings of

the Third International World-Wide Web Conference, April 1995.

http://www.igd.fhg.de/www/www95/proceedings/papers/44/mukh/mukh.html.

[68] NCSA. Ncsa mosaic common client interface, version 1.1, March 1995.

http://www.ncsa.uiuc.edu/SDG/Software/XMosaic/CCI/cci-spec.html.

[69] Donald Neal. The harvest object cache in New Zealand. In Pro-

ceedings of the Fifth International World Wide Web Conference, 1996.

http://www5conf.inria.fr/fich html/papers/P46/Overview.html.

[70] Ted Nelson. Literary machines: The report on, and of, project xanadu, concern-

ing word processings, electronic publishing, hypertext, thinkertoys, tomorrow's

intellectual revolution, and certain other topics including knowledge, education

and freedom, 1981. Available from the author (8480 Fredericksburg #138, San

Antonio, TX 78229).

[71] Ted Nelson. A new home for the mind? DATAMATION, March 1992.

http://www.datamation.com/PlugIn/issues/bestof/xanadu.html.

[72] Jakob Nielson. The art of navigating through hypertext. Communications of

the ACM, 33(3):296{310, March 1990.

[73] Jakob Nielson. Evaluating the thinking aloud technique for use by computer

scientists. In Hartson and Hix, editors, Advances in Human-Computer Interac-

tion, volume 3, pages 75{88. Ablex, 1992.

[74] Allan Paivio. Imagery and Verbal Processes. Holt, Rinehart, & Winston, 1971.

[75] Tomas Partl and Adam Dingle. A comparison of WWW caching algorithm

e�ciency. http://webcache.ms.mff.cuni.cz:8080/paper/paper.html.

[76] Randy Pausch, J. Snoddy, R. Taylor, S Watson, and E. Haseltine. Disney's

Aladdin: First steps toward storytelling in virtual reality. Computer Graphics,

SIGGRAPH '96 Proceedings, 1996.

149

[77] Oskar Pearson. Squid users guide, September 1997. http://

cache.is.co.za/squid/.

[78] Brian Pinkerton. Finding what people want: Experiences with the we-

bcrawler. In Electronic Proceedings of the Second World Wide Web Con-

ference '94: Mosaic and the Web, 1994. http://www.ncsa.uiuc.edu/

SDG/IT94/Proceedings/Searching/pinkerton/WebCrawler.html.

[79] P. Pirolli, J. Pitkow, and R. Rao. Silk from a sow's ear: Extracting usable

structures from the web. In CHI `96 proceedings, pages 118{125, 1996.

[80] James E. Pitkow and Margaret M Recker. A simple yet robust caching

algorithm based on dynamic access patterns. In Proceedings of the Sec-

ond World Wide Web Conference, 1994. http://www.ncsa.uiuc.edu/

SGD/IT94/Proceedings/DDay/pitkow/caching.html.

[81] Pointcast, 1996. http://www.pointcast.com.

[82] James R. Pomerantz. Perceptual organization in information processing. In

Micheal Kubovy and James R. Pomerantz, editors, Perceptual Organization,
pages 141{180. Lawrence Erlbaum Associates, 1981.

[83] D. Raggett. HTML 3.2 reference speci�cation, W3C recommendation, January

1997. http://www.w3.org/TR/REC-html32.html#map.

[84] Rational Software. Purify, 1998. http://www.pureatria.com/products/purify/.

[85] H. Reese. Imagery in children's learning: A symposium. Psychological Bulletin,

73:383{421, 1970.

[86] David Metheny Robb. The Art of the Illuminated Manuscript. A. S. Barnes,

1973.

[87] Neil C. Rowe and Brian Frew. Finding photograph captions multimodally on the

World WideWeb. In AAAI-97 Spring Symposium Series, Intelligent Integration

and Use of Text, Image, Video, and Audio Corpora, pages 45{51, March 1997.

[88] Gerard Salton. Dynamic Information and Library Processing. Prentice-Hall,

Inc., 1975.

[89] SavvySearch, 1995. http://guaraldi.cs.colostate.edu:2000/.

[90] Dale Schumacher. General �ltered image rescaling. In David Kirk, editor,

Graphics Gems III, pages 8{16. Academic Press, 1994.

150

[91] Erik Selberg and Oren Etzioni. Multi-service search and compari-

son using Metacrawler. In Proceedings of the Fourth International

World Wide Web Conference, 1995. http://www.cs.washington.edu/

research/projects/softbots/papers/metacrawler/www4/html/

Overview.html.

[92] Peter Selfridge and Thomas Kirk. Cospace: Combining web brows-

ing and dynamically generated, 3D, multiuser environments. intelli-
gence: New Visions of AI in Practice, 10(1):24{32, 1999. see also

http://cospace.research.att.com.

[93] J. Smith. Integrated Spatial and Feature Image Systems: Re-

trieval, Analysis and Compression. PhD thesis, Columbia University,

1997. http://disney.ctr.columbia.edu/jrsthesis/ and http://

www.ctr.columbia.edu/webseek/.

[94] Lionel Standing, Jerry Conezio, and Ralph Norman Haber. Perception and

memory for pictures: Single-trial learning of 2500 visual stimuli. Psychonomic

Science, 19(10):73{74, 1970.

[95] Ken Turkowski. Filters for common resampling tasks. In Andrew S. Glassner,

editor, Graphics Gems, pages 147{165. Academic Press, 1990.

[96] Steve Uhler. Web library help page. http://www.sunlabs.com/�suhler/

html library/help.html.

[97] Christopher De Hamel. A History of Illuminated Manuscripts. Phaidon, 1986.

[98] Logging control inW3C httpd, 1995. http://www.w3.org/Daemon/User/Config/

Logging.html.

[99] WebCompass 1996. http://www.quarterdeck.com/qdeck/products/

webcompass/.

[100] Max Wertheimer. Principles of perceptual organization. In David Beardslee

and Michael Wertheimer, editors, Readings in Perception, pages 115{135. D.
Van Nostrand Company, Princeton, 1958.

[101] James E. White. Mobile agents. In Je�rey M. Bradshaw, editor, Software
Agents. MIT Press, April 1997.

[102] Kent Wittenburg, Wissam Ali-Ahmad, Daniel LaLiberte, and Tom Lanning.

Rapid-�re image previews for information navigation. In Proceedings of AVI

'98, Advanced Visual Interfaces, May 1998.

151

[103] Kent Wittenburg, Duco Das, Will Hill, and Larry Stead. Group asynchronous

browsing on the Worldwide Web. In The World Wide Web Journal, Proceeding

of the Fourth International World Wide Web Conference, pages 51{62, 1995.

http://www.w3.org/pub/Conferences/WWW4/Papers/98/.

[104] Michael Wynblatt and Dan Benson. Web page caricatures: Visual summaries

for WWW documents. In IEEE International Conference on Multimedia Com-

puting and Systems, 1998.

[105] Nicole Yankelovich, Norman Meyrowitz, and Andries van Dam. Reading and

writing the electronic book. IEEE Computer, 18(10):15{30, October 1985.

[106] Frances Yates. The Art of Memory. Pimlico, 1964.

152

