Pad++ Reference Manual
(Version 0.9)

Introduction

This reference manual describes the complete Tcl API to Pad++. It describes how to create and modify a Pad++
widget, and al the commands associated with a Pad++ widget that alow you to create and modify items, attach
event bindings to them, navigate within the Pad++ widget, etc.

This document in organized into the following sections:

 Padwish Synopsis

* TCL Synopsis

» Widget-Specific Options

* Widget Commands

* Overview of Item Types

* Default Bindings

* Global TCL Variables

* KPL-Pad++ Interface
Each section contains all the relevant entries in alphabetical order. Related commands and options are a so grouped
together here to show which commands are related. Every command and itemconfigure option are listed. Note that
change bars appear wherever this document differs from the previous version.

Related Commands and Options

ltems

cr eat e[21] Create new items

del et e[23] Delete existing items

find[31] Search for items by various keys

i svi si bl e[55] Return trueif the specified item isvisible.
i tenconfigure Configure existing items

| ower [60] Push an item lower in the drawing order
pi ck[65] Find the item under a point

popcoor df rame[66] Pop arelative coordinate frame off of the stack
pushcoor df r ame[68] Add anew relative coordinate frame to the stack

rai se[69] Bring an item higher in the drawing order

r eset coor df r ane[75]Reset coordinate frame stack to empty

seti d[82] Change theid of an item

t ext [9]] Modify text item

type[93] Get the type of an item

-aliases [1] (Read-only) Returns all aliases of the item

-arrow [7] Whether to draw arrow heads with thisitem

-arrowshape [8] The shape of drawn arrow heads

- hei ght [26] Height of anitem. Normally computed, but can be set to squash/stretch item
-htm [27] The HTML item associated with an htmlanchor

-ht m anchors [28] Theanchors associated with an HTML page

-image [29] Image data associated with item (allocated by image alloc)
-info [30] A place to store application-specific information with an item

Page 1

-ismap [31]

-l ock [35]
-state [53]
-sticky [54]
-text [56]
-timerrate [57]
-timerscript
-title [59]
-url [63]
-width [68]
-zoonmaction [70]

[58]

Trueif an htmlanchor is an image map

Locks an item so it can not be modified or deleted

State of an item (such as visited, unvisited, etc.)

Specifiesif an item should stay put when the view changes

The text of any item containing text

Frequency timerscript should fire

Script associated with an item that fires at regular intervals
Someitemsonly: Title of anitem

The URL associated with an item

Width of an item. Normally computed, but can be set to squash/stretch item
A script that gets evaluated when an item is scaled larger or smaller than a set size

ltem Transformations

ani mte [1]
bbox [10]
coords [2Q]
get si ze[44]
rotate[76]
scal e [77]
slide [88]

-anchor [3]
-anchorpt [4]
-angle [5]
-angl ectr [6]
-position [47]
-rposition [51]
-scal e [52]

Animate item options asynchronously

Get the bounding box of an item

Change the coordinates of an item

Get the size of an item (possibly within portals)
Rotate an item

Change the size of an item relatively

Move an item relatively in (X, y)

The part of theitem that - posi t i on refersto

The (X, y) portion of - posi ti on

Specifies absolute rotation of item

Specifies absolute rotation of item, rotating about specified point
The absolute position of the abject (x, y, scale)

The relative position of the object (to groups)

The (scale) portion of - posi ti on

View Transformations

center [15]
cent er bbox [16]
get vi ew [47]
get zoom[48]
novet o [62]
zooni99]

-1 ookon [36]
-Vvi ew [65]
-Vviewscript [66]
Tags

addt ag[5]

del etetag [23]
dt ag[23]

gettags [45]
hast ag [51]

-tags [55]
Events

bi nd [11]
bi ndt ags [12]

Change the view so asto center an item

Change the view so asto center a bounding box

Get the current view (possibly within portals)

Get the current view magnification (possibly within portals)
Change the view (possibly within portals)

Zoom the view around a specified point

Specifies the pad widget this item sees
Specifies the view thisitem sees
A script that gets evaluated whenever the view is changed

Add atag to anitem

Delete atag from an item

Synonym for deletetag

Get the tags an item has

Determine if an item has a particular tag

List of tags associated with an item

Create, modify, access, or delete event bindings
Specify whether events should go to the most-specific or most-general description

Page 2

focus [32] Set the focus for keyboard events

nodi fier [61] Manipulate user-defined modifiers

-events [20] Trueif item receives events, false otherwise

Groups

addgr ouprenber [2] Add an item to agroup

get group [38] Get the group an item belongs to

renmovegr oupnenber [72] Remove anitem from agroup

- di vi si bl e [16] Trueif events go through a group to its members

-menbers [38] Thelist of members of agroup

Layout

grid [50] Manage item layout in agrid as with the Tk grid command

| ayout [58] Layout items once

tree [92] Manage item layout with a dynamic graphical-fisheye view tree
Rendering

damage[22] Specify that a group of items needs to be redrawn

updat e [94] Force any requested render reguests to occur immediately

- al waysrender [2] Trueif theitem must be rendered, even if the system is slow and the item is small
- border [10] Specifies border color of item

-borderw dt h [11] Specifieswidth of border

-capstyle [12] Specifies how to draw line ends

-clipping [13] Controlsif items are clipped to their bounding box when rendered

-di t her [15] Render with dithering

-faderange [21] Range over which an item fades in or out

-fill [23] Specifiesfill color of item

-font [24] Specifies font to use for text

-joinstyle [32] Specifieshow to draw the joints within multi-point lines

-layer [33] Thelayer anitemison

- noi sedat a [42] Specifies parameters to render item with noise

- maxsi ze [37] The maximum size an item is rendered it (absolute or relative to window size)
-m nsi ze [4]] The minimum size an item isrendered it (absolute or relative to window size)
- pen [45] Specifies pen color of item

- penwi dt h [46] Specifies width of pen

-relief [49] Specifies how border should be rendered (raised, flat, sunken, ridge, groove)

-transparency [61] Transparency of anitem. Oiscompletely transparent, 1 is completely opague
-vi si bl el ayers [67] Thelayersthat are visible within this view (just for portals and surface, item #1)

Renderscripts

border [13] Manipulate afake 3D border for use in arender callback
col or [1§] Manipulate a color for use in arender callback

render [73] Configure and use renderer

renderitem [74] Render an item in arender callback

-renderscri pt [50] A script that gets evaluated every time an item is rendered

-bb [9] A script that gets evaluated to specify the bounding box of an item
File I/O
cache [14] Control item cache

Page 3

read [71]
wite [9§]

“file [22]

-witeformt [69]

Miscellaneous
confi gure [19]
font [33]

ht m [52]

i mge [53]

i nfo [54]

| ayer [57]
random[70]

set | anguage [84]
settopl evel [87]
sound [89]

wi ndowshape [97]

-donescript [17]
-errorscript [19]
-reference [48]

Read a .pad file
Write a .pad file (all the items on awidget)

File an item should be defined by
Controls whether disk-based item iswritten out by copy or reference

Modify the pad widget

Manipulate fonts and the font path

Manipulate and query an html page and its anchors.
Manipulate images

Get type-specific information about an item
Manipulates layers

Generates a random integer

Set the language to be used for future callback scripts
Set the language to be used by the top-level interpreter
Manipulate and play sounds

Modify the shape of the top-level window that a pad widget isin

A script to evaluate when a background action has completed
A script to evaluate when a background action has an error
What item an alias references

- updat escri pt [62] A script to evaluate when a background action has made progress

Utilities

cl ock [17]
getdate [37]

get pads [42]

i ne2spline [59]
noi se [63]

padxy [64]
spline2line [90]
url fetch [95]
war p [96]

Widgets
-comuand [14]
-editable [18]
-from[25]
-linesize [34]

Create a clock to measure elapsed milliseconds
Get the current date in unix format

Get alist of al pad widgets currently defined
Generate points for a spline that approximate aline
Generate 'perlin’ noise

Convert awindow point (X, y) to pad coordinates
Generate points for aline that approximate a spline
Retrieve a URL over the internet in the background
Warp (move) the core pointer

Callback for widgets

Trueif text item is editable

Starting value of valuator widget

Amount widget should change to represent a line change

- menber | abel s [39] List of labelsfor apull-down or pop-up menu

- menubar [40]

-orientation [43]

- pagesi ze [44]
-to [60]
-val ue [64]

Debugging
printtree [67]

Extensions
addoption [4]
addt ype [6]

Menubar associated with aframe
Orientation of widget (horizontal or vertical.)
Amount widget should change to represent a page change
Ending value of valuator widget
Current value of valuator widget

Print all the items on the pad surface in their internal tree structure

Create anew option for an existing type
Create anew item type

Page 4

ltem Types

* [tem Options

* AliasItems

 Button Items

e Canvas ltems

» Checkbox Items

» Checkboxmenuitem Items

» Choicemenu Items

e Frameltems

* Grid Items

* Group Items

e HTML Items

* Image [tems

 KPL Items

e Labdl Items

e Lineltems

* Menu ltems

* Menubar Items

* Menuitem ltems

* Menu ltems

 Pad Items

* Panel Items

* Polygon Items

* Portal Items

* Rectangle Items

 Scrollbar I1tems

* Spline ltems

*TCL Items

e Text Items

» Text items have default event bindings which can be used for emacs-style editing of them. See the
section on Default Bindings for moreinfo.

 Textfield Items

* Window Items

Executables

When Pad++ is built and installed correctly, there are two executable files that may be run. padwish runs a version
of the Tcl interpreter extended with the pad widget. Thisis a complete superset of the standard Tk wish program.
The pad command is the sole addition which is described below. In addition, the Pad++ distribution comes with
an application written entirely in Tcl called PadDraw. This application is a general-purpose drawing and demo
program that shows many capabilities of the pad widget. There are two scripts which can be used to run Pad++.
'pad’ is a script which sets the appropriate environment variables and runs padwish, giving a Tcl prompt.
"paddraw’ is started by running the paddraw script which automatically runs padwish and starts the Tcl PadDraw
program. When running PadDraw by executing paddraw, the Tcl interpreter is not available.

Padwish Synopsis

padwi sh [options] [arg arg ...]

Page 5

Valid options are:

-col ormap col or map
Specifies the colormap that padwish should use. If colormap is"new", then a private colormap is
allocated for padwish, so images will 1ook nicer (although on some systems you get a distracting flash
when you move the pointer in and out of a PadDraw window and the global colormap is updated).

-di spl ay displ ay
Display (and screen) on which to display window.

-geomnetry geonetry
Initial geometry to use for window.

-help
Print a summary of the command-line options and exit.

-l anguage
Specifies what scripting language the top-level interpreter should use. Pad++ always supports Tcl, but
can be compiled to use the Elk version of Scheme also. In addition, Pad++ provides a mechanism to
support other interpreted scripting languages as well. Defaultsto 'tcl’.

- name nane
Use name as the title to be displayed in the window, and as the name of the interpreter for send
commands.

-nor gh
Force all images to be loaded without RGB data. This means that images will be stored with one byte
per pixel instead of the normal 5 bytes per pixel. Asaresult, imageswill not be able to be dithered.

- shar ednenory
Specifies if Pad++ should try and use X shared memory. Some machines (notably a particular Solaris 5.4
machine) crashes and the X server dies when Pad++ is used with shared memory, so it can be disabled if
thereistrouble. Defaultsto 1 (true).

-sync
Execute al X server commands synchronously, so that errors are reported immediately. Thiswill result
in much slower execution, but it is useful for debugging.

-vi sual vi sual
Specifies the visual type that padwish should use. The valid visuals depend on the X server you are

running on. Some common useful ones are "truecolor 24" and "truecolor 12", which specify 24 bit and
12 bit mode, respectively.

Pass all remaining arguments through to the script's argv variable without interpreting them. This
provides a mechanism for passing arguments such as -name to a script instead of having padwish
interpret them.

TCL Synopsis

pad [pat hNane [options]]

Page 6

The pad command creates a new window (given by the pat hNane argument) and makes it into a Pad++ widget.
If no pat hName is specified, a unique top-level window name will be generated. Additional options may be
specified on the command line or in the option database to configure aspects of the Pad++. The pad command
returns the name of the created window. At the time this command is invoked, there must not exist a window named
pat hName, but pat hNane's parent must exist.

Once a Pad++ widget is created, there are five ways of writing Tcl codefor it. They are:

« Configuring the widget: Each widget has severa configuration options that control the widget as a whole.
For example, - wi dt h and - hei ght control the geometry of the widget.

» Executing widget commands: There are many commands associated with the widget. They are actually
sub-commands of the primary widget command. When a new pad widget is created, a command is also
created whose name is the name of the widget. For instance, evaluating pad . pad creates a widget named
. pad, and acommand named . pad. For example, to find out what the current view on the pad widget is,
usethe get vi ewcommand with: . pad getvi ew.

* Creating items on the widget: Each pad widget can contain many graphical items, such as lines, text, etc.
These are all created with the cr eat e sub-command. For example, . pad create line 0 0 10 10
creates a line from the origin to the point (10, 10).

 Configuring those items. Once items have been created, they can be modified with thei t enconfi gure
sub-command. For example, supposing that the previous line had an id of 2, we could change its pen color
and width with: . pad itentonfigure 2 -pen red -penwidth 5

» Accessing global Pad variables: The pad widget declares certain global Tcl variables that can be used by
applications. For example, to see the current version of Pad++, examine the Pad Version variable.

This version of Pad++ works with either Tcl7.5/Tk4.1 or Tcl7.6/Tk4.2.

Note that in this reference manual, optional parameters are listed in square brackets, [...]. While thisis traditional
for reference documentation, the Tcl/Tk documentation uses ?...? to denote optional parameters in order to avoid
confusion with the meaning of [...] in the Tcl language. We decided to risk the confusion with Tcl for the increased
clarity of square brackets.

Widget-Specific Options

Name: backgr ound
Class: Backgr ound
Command-Line Switch: - backgr ound
Specifies the normal background color to use when displaying the widget.

Example:
. pad config -background gray50

Name: cl oseEnough
Class: O oseEnough
Command-Line Switch: - cl oseEnough

Specifies afloating-point value indicating how close the mouse cursor must be to an item beforeit is

Page 7

considered to be "on" theitem. Defaultsto 3.0.

Name: cur sor
Class: Cur sor
Command-Line Switch: - cur sor

Specifies the mouse cursor to be used for the widget. The value may have any of the forms acceptable to
Tk_GetCursor.

Name: debugBB
Class. DebugBB
Command-Line Switch: - debugBB

Turns on and off display of bounding boxes. Default is 0.

Name: debugEvent
Class. DebugEvent
Command-Line Switch: - debugEvent

Turns on and off debugging of events. Default is 0. When event debugging is turned on, pad outputs a
description of event handlers asthey fire. Inaddition, if abreak or event in a handler stops some events
from firing, those events not fired are shown. By default, the event debugging output goes to stdout,
however, it can be sent to a Tcl variable with the -debugOut configure option. Also note that PadDraw
comes with a graphical interface that creates a GUI for seeing and examining events asthey fire. This
graphical event debugger can be used in other pad applications. See draw/debugevent.tcl.

Name: debugCGen
Class. DebugCGen
Command-Line Switch: - debugGen

Turns on and off general debugging. Default is 0.

Name: debugQut
Class. DebugQCut
Command-Line Switch: - debugQut

Controls where debug output goes. By default, debug output is sent to stdout. However, the -debugOut
configure option can specify a Tcl variable that all debug output will be appended to. It isthen possible
to set aTcl trace on that variable to be notified whenever debug output is available. Currently, only -
debugEvent uses the -debugOut variable.

Example: Evaluating”. pad confi g -debugQut f oo" will cause all future debug output to be
appended to the Tcl variable'f oo’.

Name: debugRegi on
Class: DebugRegi on
Command-Line Switch: - debugRegi on

Turns on and off visual display of portion of the screen that actually gets re-rendered. Used to debug
region management. Default is 0.

Name: def aul t Event Handl er s

Class; Def aul t Event Handl er s
Command-Line Switch: - def aul t Event Handl er s

Page 8

Turns on and off the default navigation event handlers. The default handlers are very simple. They
allow basic panning with mouse button #1, zooming in with button #2, and zooming out with button #3.
Default isO.

Name: def aul t Render Level
Class. Def aul t Render Level
Command-Line Switch: - def aul t Render Level

Specifies the default render level to use to display the Pad if no specific level is specified. The render
level is generally used for efficiency where render level O isthe fastest and least pretty way to render the
pad (text isuglier, smaller items are not rendered, some items are rendered at alower resolution). Asthe
render level goes higher, the pad is rendered slower and prettier

Name: desi r edFr aneRat e
Class: Desi r edFr aneRat e
Command-Line Switch: - desi r edFr aneRat e

Specifies the desired frame rate (in frames per second). This number is used by the Pad++ rendering
engine to decide how to render the scene while animating. If a high frame rate is requested, small objects
may not be rendered (see - al waysr ender) flag, and some objects may be rendered at low resolution.
The default is 20 frames/second.

Name: di ssol veSpeed
Class: Di ssol veSpeed
Command-Line Switch: - di ssol veSpeed

Specifies how quickly dissolves should occur upon refinement. When the pad widget refines, it uses a
dissolve effect instead of a simple buffer swap. The dissolveis controlled by -dissolveSpeed. This
option may vary between 0 and 3 where 0 isa simple buffer swap, 1 isafast dissolve, and 3isthe
slowest dissolve. The default is 2.

Name: doubl eBuf f er
Class; Doubl eBuf f er
Command-Line Switch: - doubl eBuf f er

Specifiesif the system should use double buffering for rendering. If doubleBuffer is set to 0 (off),
rendering will be alittle faster, but the screen will flash quite a bit. Mostly useful for debugging. Default
isl

Name: f ast Pan
Class: Fast Pan
Command-Line Switch: - f ast Pan

Pad++ normally does fast pans, i.e., copying the portion of the screen that doesn't change, and re-
rendering the new portion. This results in an approximation which can make the view be off by upto a
half of apixel. Fast panning can be disabled by setting this flag to O which resultsin slower but more
accurate pans. Default is 1.

Name: f ont CacheSi ze
Class. f ont CacheSi ze
Command-Line Switch: - f ont CacheSi ze

Page 9

Pad++ employs a simple caching mechanism when drawing text in Typel fonts. The caching mechanism
remembers what size, font and bitmap it used when it last drew a particular character, and if that
character is drawn again at the same size and font, Pad++ reuses the last bitmap image for that character
rather than generating the bitmap for the character from its outline description. This greatly increases the
speed of rendering large quantities of text.

Y ou can configure the caching mechanism using the -fontCacheSze option. The font cache sizeis
measured in Kilobytes (rounded to the nearest 100K). Setting -fontCacheS ze to 0 turns off font caching,
and characters are always drawn from their outline descriptions. The default value is 100 which produces
significantly faster font rendering than using no font cache. Vaues above 100 have a lesser impact on
performance, but may be effective for applications which use alot of text with different fonts and sizes.

Name: ganma
Class: Gamma
Command-Line Switch: - gama

Specifies ‘gamma’ used for allocating colors for images. This number controls how light or dark an image
appears to be. Larger numbers will make images appear lighter. Default is 1.0.

Name: hei ght
Class. Hei ght
Command-Line Switch: - hei ght

Specifies the height of the Pad in pixels. Defaults to 400.

Name: hei ght nmof scr een
Class. Hei ght MMOF Scr een
Command-Line Switch: - hei ght mrof scr een

Specifies the height of the physical screen in millimeters. Normally, thisinformation is given by the X
server, but sometimesit isincorrect (for example, on some laptops). If it isincorrect, coordinates on the
Pad++ surface will beincorrect. If thisvalueis set to O, the X server information will be used. Defaults
to 0.

Name: i nterrupti bl e
Class:i nterruptible
Command-Line Switch: -i nterrupti bl e

If thisflag istrue (1), then animations and slow renders will be interrupted by events (mouse and
keyboard). Defaultsto true (1).

Name: maxZoom
Class: MaxZoom
Command-Line Switch: - maxzoom

This controls the maximum zoom (in and out) that any view isallowed. Thisway, it not possible to
crash pad by zooming in or out too far. It defaults to 100,000,000 which gives 16 orders of magnitude of
zooming (8in and 8 out). Note that the amount one can zoom in is determined by the product of the (X,
y) position and the zoom. So, while you can zoom into the position (0, 0, 200000000), you can only
zoom into (1000, 1000, 100000). Setting -maxzoom to O disables the checking.

Name: nedi umObj Si ze

Class: Medi unbj Si ze
Command-Line Switch: - medi untbj Si ze

Page 10

Pad++ tries to keep up the display rate, even when the scene gets complicated. If the system becomes
slower than the requested frame rate, it both stops drawing small objects, and it draws medium-sized
objectsin avery ugly fashion. This option configures the size below which objects are considered to be
medium-sized. Default is 100 pixels. (Also see- snal | Cbj Si ze configuration option.)

Name: r ef i nenent Del ay
Class. Ref i nenent Del ay
Command-Line Switch: - r ef i nerment Del ay

Specifies the delay in milliseconds after the last X event to start refinement. Default is 1000.

Name: srmal | Cbj Si ze
Class. Smal | Obj Si ze
Command-Line Switch: - snal | Obj Si ze

Pad++ tries to keep up the display rate, even when the scene gets complicated. If the system becomes
slower than the requested frame rate, it both stops drawing small objects, and it draws medium-sized
objectsin avery ugly fashion. This option configures the size below which objects are considered to be
small-sized. Default is 10 pixels. (Also see- nedi untbj Si ze configuration option.)

Name: sync
Class. Sync
Command-Line Switch: - sync

Specifiesif X event synchronization should be turned on. When it is on, the X server executes every
command as it is executed rather than caching them and executing commands in groups. Generally
useful just for debugging. Default isO.

Name: uni t s
Class; Uni ts
Command-Line Switch: -units

Specifies unit dimensions for all coordinates used by Pad++. It can be any of "points’, "mm", "inches",
or "pixels'. Default is points.

Name: wi dt h
Class: W dt h
Command-Line Switch: - wi dt h

Specifies the width of the Pad in pixels. Defaults to 400.

Name: wi dt hnmof scr een
Class: W dt hMMOF Scr een
Command-Line Switch: -wi dt hnmof scr een

Specifies the width of the physical screen in millimeters. Normally, thisinformation is given by the X
server, but sometimesit isincorrect (for example, some laptops). If it isincorrect, coordinates on the

Pad++ surface will be incorrect. If thisvalueis set to O, the X server information will be used. Defaults
to 0.

Widget Commands

Page 11

The pad command creates a new Tcl command whose name is pat hName. This command may be used to invoke
various operations on the widget. It has the following general form:

pathName option [arg arg ...]

Option and the args determine the exact behavior of the command. The following widget commands are
possible for Pad++ widgets:

[1] pat hNarme ani mate subcomand [args ...]

The ani mat e command is the key to a sophisticated animation engine that allows asynchronous
animations of most options of items on the Pad++ surface. An item can be moved across the screen
whileits color is being changed while another is being rotated. This all happensin the background so
that Pad++ continues to process events while animations happen.

The basic units of an animation are:
e path: Defines the values visited by the changing option
» channel: Associates an object with a path and the property to animate
* animation: Groups channels and animations as a single unit

A very simple example that creates and then zooms some text follows:

set txt [.pad create text -text "Hello Wrld" -pen yellow\
-pos {0 -50 0.2} -anchor center]

set txtpath [.pad animcreate path -path {{0 -50 0.2} {0 -50 5}} \
-endtine 2]

set txtchannel [.pad animcreate channel -object $txt \
-path $txtpath -option -pos]

.pad ani mstart $txtchannel

The animate command contains several subcommands. Briefly, they are:

* create: Create an animation unit

* configure: Configure an animation unit

* delete: Delete an animation unit

* Start: Begin play of channel or animation

e interrupt: Stop channel or animation beforeit is complete
* getvalue: Get interpolated value from path

The animate subcommands in more detail are:
pathName anim cr eat e AnimationUnit [option value ...]
This creates one of the basic animation units (paths, channels, and animations.) When onecreatesan
animation unit, aunique token for that unit is returned. Use the returned token to refer to that unit for
future configuration/manipul ations.
Example:
set path [.pad animcreate path -path {0 1}]
set channel [.pad animcreate channel -path $pat h]
.pad ani mconfigure $channel -endtine 3

Following are all of the options that can be specified for each AnimationUnit:

Page 12

Pat h configuration options:

- pat h [path]:
path isthe set of "points’ that defines the values to be visited by the curve. The "points’ define
a"polyline" in one, two, or three dimensions.

Example:
.pad animconfig -path {1.0 2.0 3.0}
.pad animconfig -path {{1.0 2.0} {3.0 4.0} {5.0 6.0}}
.pad animconfig -path {{1.0 2.0 3.0} {4.0 5.0 6.0} \
{7.0 8.0 9.0}}

- ti mepat h [timepath]:
Timepath is a set of time value pairs that define both the values and the time that each value
should be reached. Thisallows one to more exactly specify the the timing of theanimationand
to produce animations that do not operate at a constant speed. One use for such animationsis
when one wants to simulate a physics-like animation by calculating position of an object at
specific timesto define an animation. If a path is specified with - endt i e instead of -
endt i me, the first value of each data set is treated as atime. Times must increasein value
from one data set to the next. Each data set must contain at least two values, atime value and
one, two, or three values to specify the configuration values defining the path.

Examples:
.pad animconfig -tinmepath
.pad animconfig -tinmepath
{7.0 8.0 9.0}}

{{1.0 2.0} {3.0 4.0} {5.0 6.0}}
{{1.0 2.0 3.0} {4.0 5.0 6.0} \

(See bouncing ball example below.)

- begi nt i me [timelnSec]
Time, in seconds, that defines when the first value of the path is obtained

- endt i me [timelnSec]:
Time, in seconds, that defines when the last value of the path is obtained

-intime [inTime]:
One may want to have the animation start somewhere other than at the first value of the path.
This can be accomplished be specifying the - endt i me which must lie between - endt i me
and - endt i ne (inclusive). In combination with - endt i me, adlice of an animation can be
specified.

- order order
The number of parameters per entry in the path. Order may be 1, 2, or 3, and must match the
order of the option the path is used with.

-outtime [inTime]:
One may want to have the animation end somewhere other than at the last value of the path.
This can be accomplished be specifying the - endt i me which must lie between - endt i me
and - endt i ne (inclusive). In combination with - endt i e, adlice of an animation can be
specified.

- post [postCondition]

This specifies what happens when the current time passes -endtime. The possible values for
this option are: constant, cycle, or oscillate

Page 13

e constant: If the current timeis after - endt i e, the last value of the path is applied.

o cycle: If the current time passes - endt i ne, the interpolated value is projected back
to thefirst value in the path, and the path is cycled through from the beginning.

e ocillate: If the current time passes - endt i ne, the interpolated value is reflected from
the final value in the path, toward the first value.

- pr e [preCondition]:
This specifies what happens when the current time is before - endt i me. The possible values
for this option are: constant, cycle, or oscillate

e constant: If the current time isbefore - endt i e, the first value of the path is applied.

o cycle: If the current time is just before - endt i e, the interpolated value is projected
to the last value in the path, and the path is cycled through from the end toward
the beginning.

e oscillate: If the current time is before - endt i e, the interpolated value is reflected back
from thefirst value in the path, toward the final value.

- Si so [boolean]
Indicates whether to apply a slow-in-slow-out effect to the animation. Default valueis"0" (off).

Example:

set rec [.pad create rectangle 0 O 100 100 -fill bl ue]

set recp [.pad animcreate path -path {{-100 0 1} {100 O 1}} \
-endtime 2 -siso 1]

set recc [.pad animcreate chan -path $recp -object $rec \
-option -pos]

.pad animstart $recc

Channel configuration options:

- pat h [pathToken]
pathToken specifies the animation path to be applied to the channel's option

- obj ect [tagOrld]
tagOr|d specifies the object/objects that are to be affected by the channel

- opti on [option]
Option specifies the item configuration option that will be animated by interpolating along the
animation path. The channel's path must be of the same order as the option. This means that if
the option to be animated is- endt i e, the path isasingle list of values (i.e. -path { 1.0 2.0
4.08.0}), if theoption is- endt i e, the path should be alist of lists containing three values
each (i.e. -path {{1.03.04.0} {2.01.07.0} {5.08.010.0}}).

Presently supported options that one may want to animate:
Order 1
e -angle

* -penwidth
* -transparency

Page 14

Order 3:

* -position (min. abbreviation -pos)

* -rposition (min. abbreviation -rpos)

« fillcolor (rgb vaues from 0 to 255)

* -pencolor (rgb vaues from 0 to 255)

o -view (applies only to pad surfaces)
* -anglectr (angle Xcenter Y center)

- begi nti e [timelnSec]
Setsthe - endt i me of the path associated with the channel. Thisisjust a convenience.
Beware that if you set the - endt i me of achannel, al channels using this same path are
affected. (See - endt i ne for paths, above)

-endti ne [timelnSec]
Setsthe - endt i me of the path associate with the channel. Thisisjust aconvenience. Beware
that if you set the - endt i me of achannel, all channels using this same path are affected. (See
- endt i e for paths, above)

Ani mat i on configuration options:

- menber s [listOf Channel SAndAnimations]:
Used to add animatables to an animation. Both channels and animations are animatable and
can be amember of an animation. An animation cannot be a member of itself.

Example:
.pad animconfig ani n0 -nenbers "chan0 chanl ani nl"

- begi nti me [timelnSec]:
If an animation (anim0) is a member of another animation (animl), - endt i me specifiesthe
delay time after animl is started, that animO should be started

- endt i me [timelnSec]
By default, thisis the amount of time for all animatablesto finish their animation. If set to a
value less than the default, all animatables will stop at the parent animation - endt i e. If set
to avalue greater than the default, there is no noticeable effect.

- speedf act or [speedFactor]
By default thisis 1.0. If one setsit to 2, the animation will be played twice as fast etc.

pathName anim conf i gur e AnimationUnit [option value ...]
One can configure an animation unit by using its configuration options. If a configuration option is
entered without specifying a value to set the option, the current value of the option isreturned. The
options that can be configured on any animation unit are the same that apply with thecr eat e

command.

Example:
. pad ani mconfig pathO -endtine 10

pathName anim del et e AnimationUnit

Deletes an AnimationUnit.

Page 15

pathName anim st art AnimationUnit

Begins the playing of an animation or of a channel.
pathName animi nt er r upt AnimationUnit

Stops the playing of an animation or of a channel, before play has completed.
pathName anim get i nt er pval timelnSec

Returns the the interpolated value along the path given the the time in seconds. This may be useful
when one wants to use a path for something other than animations, or just to check values along an
animation path. This command applies only to animation paths.

Notes concerning animations:

Commands and options can be abbreviated with any string that uniquely identifies the command or
option of interest.

When one changesthe - endt i ne or - begi nt i ne of achannel, it isthe path that is associated with
the channel that is actually affected. Be careful that the affected path is not also being used in another
channel that needs adifferent - endt i me and - begi nt i ne. If it is, make another path with the same
dataand the desired - endt i ne and - begi nti ne.

When directly playing channelsviaacommand suchas’. pad ani m start channel Token’,
each channel hasits own timer. So if you have several channels playing in overlapping time, you have
several timers going. If you place several channels into a parent animation, when you play that
animation all the channels are played using one timer. If you place animations within a parent animation,
when the child animations are playing, each usesits own timer.

Thereisaconflict between angles, groups, and animations. For example, if we have a group (10) with
items 5 and 6 in it, and we make an animation that changes that relative position of item 5 and tries to
rotate the group at the same time, thereis aproblem. - r posi t i on does not account for the -angle of
the group. So the orientation of the motion of item 5 is not rotated with the group.

Example animations:

BHHHBHHH B H B H B H B H B H R H R H R H R H R H R H R H R H R R R
| MPROVED HELLO WORLD ANI MATI ON

Here is an animation to illustrate the comnbi ni ng of

channel s and ani mations into a single ani mation.

BHHHBHHH B H B H B H B H B H R H R H R H R H R H R H R H R H R R R

Set up hello world channel

set txt [.pad create text -text "Hello Wrld" -pen yellow\
-pos {0 -50 0.2} -anchor center]

set txtpath [.pad animcreate path -path {{0O -50 0.2} {0 -50 5}} \
-endtinme 2]

set txtchannel [.pad animcreate channel -object $txt -path $txtpath \
-option -pos]

Make four rectangl es
for {set i 0} {$i<4} {incr i} {

Page 16

.pad create rectangle 0 0 100 100 -fill black -pos {0 50 1} -tags rect$
}

Make a two paths, one first order and one third order

set p0O [.pad animcreate path -path {0 180 90}]

set pl [.pad animcreate path -path {{0O 0 0} {255 0 0} {0 255 0} \
{0 0 255} {0 0 0}} -post cycle]

Make two channel s for each object.
One channel for changing -angle
the other for changing -fill

set | O
for {set i 0} {$i<8} {incr i 2} {
set obj [.pad find withtag rect$i]
set c¢$i [.pad animcreate channel -object $obj -option -angle \
-path $p0 -begintine 0 -endti ne 6]
set c[expr $i+1] [.pad animcreate channel -object $obj -option -fill \
-path $pl -begintine 3 -endtinme 12]
incr j

}

Make three ani mati ons contai ning only channels

and one ani mati on contai ning channels and the

ot her ani mations

set a0 [.pad animcreate anim-nenbers "$c0 $c1" -endtinme 10 \
-begintinme 2.5]

set al [.pad animcreate anim-nenbers "$c2 $c3" -endtinme 10 \
-begintinme 5.0]

set a2 [.pad animcreate anim-nenbers "$c4 $c5" -endtinme 10 \
-begintinme 7.5]

set a3 [.pad animcreate ani m-nenbers "$txtchannel $c6 $c7 $a0 $al $a2" \
-endtime 10 -begintine 0]

.pad animstart $a3

HERHHHHH PR HH T H T R
BOUNCE

Thi s exanpl e shows a bounci ng ball animation

Ki nemati ¢ equations are used to calculate the
path for a bouncing ball that |ooses energy.

A -tinepath is created and applied to an oval
in a rectangul ar box.

HERHHHHH PR HH T H T R

HHHHH R

.pad noveto 0 500 0.2
set box [.pad create rectangle -165 -50 165 1400 -penw dth 20]

set ball [.pad create oval 0 0 100 100 -fill blue -pos "0 0 1"]
set boxBall [.pad create group -nenbers "$ball $box"]

Page 17

set t 0.0

set a -98.0

set v0 500.0

set x0 0.0

set tpath ""

set delT 0.01
set coefRes 0.90

set endt [expr 2.0*$v0/ $a]
set endit [expr abs(int($endt/$del T))]
set refTine 0.0

for {set j 1} {$ < 20} {incr j 1} {
for {set i 0} {$i <= $endit} {incr i 1} {
set t [expr $i*$del T]
l append tpath "[expr $refTine + $t] O [expr ((0.5)*$a*$t*$t \
+ $vO*$t + $x0)] 1"

set vO [expr ($vO0*pow $coefRes, $j))]
set refTime [expr $refTime + $t]

set endt [expr 2.0*$v0/ $a]

set endit [expr abs(int($endt/$del T))]

}

set ballpath [.pad animcreate path -timepath $tpath \
-endtine [expr $refTinme + $t] -intinme 5]

set ballchan [.pad animcreate channel -object $ball -path $ball path \
-option -rpos]

set ballanim|[.pad animcreate ani mati on -nenbers $bal | chan]

run the aninmation wth:

.pad animstart $bal |l anim

HERHHHHH TR H P H T H
USI NG A POLYLI NE TO DEFI NE A PATH

Here is an exanple of using a polyline to define

a -path (a -tinepath could be created by addi ng

times in the "for" loop creating the pathlist).
HERHHHHH TR H P H T H

To use the script, create a polyline (try one in the
formof a big spiral), nmake sure it is selected,
then enter the foll ow ng code:

set coordlist [.pad coords [.pad find withtag sel ected]]
if {$coordlist ==""} {

set coordlist {O O 100 0 100 100 0 100 O 0}
}

set len [Ilength $coordlist]
set curscale [lindex [.pad getview] 2]

Page 18

set pathli st
for {set i 0} {$i < $len} {incr i 2} {
| append pathlist "[lindex $coordlist $i] [lindex $coordlist \
[expr $i + 1]] $curscale"

}

Here is an exanple of using "pathlist” to
create an animation to nove a rectangle

set obj [.pad create rectangle 0 0 50 50 -fill red]

set coordPath [.pad animcreate path -path $pathlist]

set rectChan |[.pad animcreate channel -path $coordPath -object $obj \
-option -pos -endtinme 10]

set nyanim [.pad ani mcreate ani m-nenbers $rect Chan]

.pad animstart $myani m

HERHHHHH PR HH T H AT H T
USI NG A Tl MEPATH
Here is an exanple of using the coordi nates
to make a -tinmepath from coordPath, enter:
This assunes that the previous exanple has
al ready been run.
HERHHHHH PR HH T H AT H T
set tinepathlist ""
set tinme 0.0
for {set i 0} {$i < $len} {incr i 2} {
| append tinepathlist "[expr $tine + [og(int($i+1))] \
[lindex $coordlist $i] [lindex $coordlist [expr $i + 1]] $curscale"
set tinme [expr $time + (1.0/($i+1.0))]
}

set coordPath [.pad animcreate path -tinmepath $tinepathlist]

set rectChan |[.pad animcreate channel -path $coordPath -object $obj \
-option -pos]

set mytanim [.pad animcreate ani m-nenbers $rect Chan]

.pad animstart $mytanim

[2] pat hNanme addgr ouprenber [-notransforn] tagOrld groupTagOrld

Add all items specified by tagOrld to the group specified by groupTagOrld. If groupTagOrld specifies
more than one item, the first oneisused. Theitems are added to the end of the group in the order
specified by tagOrld. Groups automatically update their bounding boxes to enclose all of their members.
Thus, they will grow and shrink as their members change.

By default, items are transformed so they don't change their location when added to a group, even if the
group has atransformation. Thisisimplemented by transforming the item's transformation to be the

Page 19

inverse of the group's transformation. If the -notransform flag is specified, thisinverse transformation is
not applied, and the item will move by the group's transformation when added. (Also see the
r enovegr oupmenber , and get gr oup commands). Returns an empty string.

Example:
set idO [.pad create line O O 100 100]
254
set id1 [.pad create line -10 20 80 -60]
255
set gid [.pad create group -members "$id0 $id1"]
256

.pad ic $gid -members
254 255

set id3 [.pad create rectangle -20 -20 130 40]

266
Bounding box aroup id = 256
.pad addgroupmember $id3 $gid
.pad ic $gid -members
254 255 266

groupid = 256

. pad renovegroupnenber $i d0 $gid
.pad ic $gid -members
255 266

Page 20

group id = 256

.pad getgroup $id2
256

[3] pat hNane addnodi fier nodifier

WARNING: addnodi fi er isanobsolete command and will be removed in the next release. Replace
all uses of addnodi fi er withthe'nodi fi er add’ command.

[4] pat hNane addoption [-nowrite] typenane optionname optionscript default

Add anew option (named opt i onnane) to al objects of typet ypenane. t ypenane must either be
abuilt-in type, a user-defined type previously defined by addt ype, or the special word "all" which
means that this option appliesto all types. When opt i onscri pt iscaled, the following arguments
will be added on to the end of the script:

pathName: The name of the pad widget the item ison
item: Theid of theitem being configured
[vaue]: Optional value. If valueis specified, then the option must be set to this value.

optionscri pt must return the current (or new) value of the option. def aul t specifies the default
value of thisoption. Thisisused to determineif the option should be written out when thewr i t e
command is executed. Note that the option will only be written out if the value is different than the
default. If - nowr i t e is specified, then this option won't be written out. See the section APPLICATION-
DEFINED ITEM TYPES AND OPTIONS in the Programmer’ s Guide for more information. (Also see
theaddt ype command.)

[5] pat hNane addtag tagToAdd tagOrid ...

For each item specified by the list of tagOrlds, add tagToAdd to the list of tags associated with the item if
itisn't aready present on that list. It is possible that no items will be specified by tagOrld, in which case
the command has no effect. This command returns an empty string.

This command is designed to be used in conjunction with the find command. Notice the necessity of
using eval inthisexample: eval . pad addtag foo [.pad find wi thtag bar]

[6] pat hNanme addtype typenane createscript

Addt ypenane tothelist of allowed user defined types. When a new object of typet ypenane is
created, thecr eat escri pt will be evaluated, and it must return an object id. Whencr eat escri pt
is evaluated, the pad widget the object is being created on will be added on as an extra argument,

Page 21

followed by any parameters before the options. See the section APPLICATION-DEFINED ITEM
TYPES AND OPTIONS in the Programmer’ s Guide for more information. (Also seethe addopt i on
command.)

[7] pat hNane al | ocborder col or

WARNING: al | ocbor der isan obsolete command and will be removed in the next release. Replace
all usesof al | ocbor der withthe’bor der al | oc’ command.

[8] pat hNane al | occol or col or

WARNING: al | occol or isan obsolete command and will be removed in the next release. Replace
all usesof al | occol or withthe’col or al | oc’ command.

[9] pat hNane al | oci nage file [-norgb]

WARNING: al | oci mage isan obsolete command and will be removed in the next release. Replace
al usesof al | oci mage withthe’i mage al | oc’ command.

[10] pat hNane bbox [-sticky] tagOrid [tagOld tagOrld ...]

Returns alist with four elements giving the bounding box for all the items named by the tagOrld
argument(s). Thelist has the form "X y4 X, Yo" such that the drawn areas of all the named elements are
within the region bounded by x; on the left, x5 on the right, y, on the bottom, and y, on the top. If -sticky
is specified, then the bounding box of the item in sticky coordinates, that is, the coordinates of a sticky
item that would appear at the same location on the screen isreturned. If no items match any of the
tagOrld arguments then an empty string is returned.

If theitemis sticky then bbox returns the bounding box of theitem asit appears for the current view.
That is, the bounding box will be different when the view is different. If -sticky is specified, then the
bounding box returned is independent of the current view (i.e., it returns the bounding box as if the view
was"001").

If theitem is the Pad++ surface (item #1), then bbox will refer to the bounding box of the portion of the
surface that is currently visible (based on the view and window size).

.pad bbox 27 37
-75-5568 79

Page 22

[11] pat hNane bind tagOrld [sequence [conmmand]]

This command associates command with all the items given by tagOrId such that whenever the event
seguence given by sequence occurs for one of the items the command will be invoked.

Thiswidget command is similar to the Tk bind command except that it operates on items on a Pad++
widget rather than entire widgets. See the Tk bind manual entry for complete details on the syntax of
seguence and the substitutions performed on command before invoking it. The Pad++ widget defines
extensions described below, but it isimplemented as a complete superset of the standard bi nd
command. |.e., you can do everything you can with the canvas with exactly the same syntax, but you can
also do more.

If all arguments are specified then anew binding is created, replacing any existing binding for the same
seguence and tagOr|d (if the first character of command is"+" then command augments an existing
binding rather than replacing it). In this case the return value is an empty string. If both command and
seguence are omitted then the command returns alist of all the sequences for which bindings have been
defined for tagOrld.

The only events for which bindings may be specified are those related to the mouse and keyboard, such
as Enter, Leave, ButtonPress, Motion, ButtonRelease, KeyPress and KeyRelease. In addition, Pad++
supports some extra bindings including: Create, Modify, Delete, Portallntercept, and Write. The
handling of eventsin Pad++ uses the current item defined in Item IDs and Tags in the Programmer’ s
Guide. Enter and Leave eventstrigger for an item when it becomes the current item or ceases to be the
current item; note that these events are different than Enter and Leave events for windows. Mouse-
related events are directed to the current item, if any. Keyboard-related events are directed to the focus
item, if any (seethef ocus command below for more on this).

It is possible for multiple bindings to match a particular event. This could occur, for example, if one
binding is associated with the item's id and another is associated with one of the item's tags. When this
occurs, all of the matching bindings are invoked. The order of firing is controlled by the pad bi ndt ags
command. The default isthat a binding associated with the all tag isinvoked first, followed by one
binding for each of theitem'stags (in order), followed by a binding associated with theitem'sid. If there
are multiple matching bindings for a single tag, then only the most specific binding isinvoked. A

cont i nue command in abinding script terminates that script, and abr eak command terminates that
script and skips any remaining scripts for the event, just as for the bi nd command.

If bindings have been created for apad window using the Tk bind command, then they are invoked in
addition to bindings created for the pad's items using the bi nd widget command. The bindings for items
will be invoked before any of the bindings for the window as awhole.

The Pad++ bind command is extended in three ways.
* Extra macro expansions are added

* New events are added: <Create>, <Modify>, <Delete>, <Write>, and <Portal | ntercept>.
* User-specified modifiers are added

Extra macro expansions

When a command isinvoked, several substitutions are made in the text of the command that
describe the specific event that invoked the command. In addition to the substitutions that the Tk
bi nd command makes, Pad++ makes a few more. Aswith the Tk bind command, all substitutions
are made on two character sequences that start with '%'. The special Pad++ substitutions are:

%P: The pad widget that received the event. Thisis normally the same as %W, but could be
different if the event goes through a portal onto a different pad widget.

Page 23

* %0: Theid of the specific item that received the event.

* %I: Information about this event. This has different meanings for different event types. For
<Mbdi fy> events, it specifies the command that caused the modification. For
<Portal I ntercept> events, it specifies the name of the event type generating the
Portallntercept. Standard Tcl event names, such as ButtonPress or ButtonRelease are used. This
can be used by Portallntercept events to only let certain event types go through the portal. Note
that only a single Portallntercept event is generated for a Button, Motion, ButtonRelease
sequence, so these three events can not be distinguished in this manner.

* %i: The X-coordinate of the event on the Pad++ surface. Thisis specified in the current units (i.e.,
pixels or inches) of the pad widget.

%j: The Y-coordinate of the event on the Pad++ surface. This is specified in the current units
(i.e., pixels or inches) of the pad widget.

%z: Size of event in pad coordinates. This is dependent on the view. It effectively says how
much the event is magnified. |.e., if the view is zoomed in by afactor of two, then this will have
avalue of two. It isalso affected by portals that the event travel s through.

%U: The X-coordinate of the event in object coordinates. This means that the point will be
transformed so that it is in the same coordinate system of the object (independent of the object’s
transformation as well as the current view). This is specified in the current units (i.e., pixels or
inches) of the pad widget.

%V: The Y-coordinate of the event in object coordinates. This means that the point will be
transformed so that it is in the same coordinate system of the object (independent of the object’s
transformation as well as the current view). This is specified in the current units (i.e., pixels or
inches) of the pad widget.

* %Z: Size of event in object coordinates. This is dependent on the view and the magnifications of
the object.

* %I: Thelist of portal ids that the event passed through.

* %L: The list of pad surfaces of the portals the event passed through. This list corresponds to the
list of portal ids from '%l".

New Events
Severa new events fire at special times, depending on the semantics of the event.

<cr eat e>: Thisevent getsfired whenever new pad items are created. Because itemsthat thisis
attached to don't have id' s yet, it only makes sense to attach this event to atag. Then this event
getsfired immediately after any item of the relevant tag is created. Example:

.pad bind foo <Create> {puts "A foo was created, id=%0'"}
.pad create rectangle 0 0 50 50 -tags "foo"
=> A foo was created, id=5

<Modi f y>: Thisevent getsfired whenever an itemis modified. Modification occurs whenever
an item’s configuration options are changed, and whenever the following commands are executed
onanitem: coords,itenconfigure,scal e,slide,text, and noveto (onaportal)
The %Il macro specifies the command that caused the modification. Example:

.pad bind foo <Modi fy> {puts "A foo was nodified, cmd=%"}
.pad create rectangle 0 0 50 50 -tags "foo"

Page 24

.pad itenctonfigure foo -pen red
=> A foo was nodi fied, cnd=itentonfigure

<Del et e>: Thisevent gets whenever an itemis deleted. It istypically used to clean up
application resources associated with the item that was deleted.

<W it e>: Thisevent fireswhenever an item iswritten out with the pad wr i t e command. While
Pad++ knows how to generate the Tcl code necessary to recreate itself, items are often part of an
application with associated data structures, etc. When an item is written out, it is frequently
necessary to write out these associated structures. Sometimes, the application may prefer to
substitute its code for pad’'s. This event provides a mechanism to augment or replace (possibly with
an empty string) the Tcl code written out to recreate a pad item.

Whatever stringa<W i t e> event returns is appended on to the string pad uses to write out that
object. In addition, the application may modify the special global Tcl variable, Pad_W i t e which
controls whether the item will get written out. Thisdefaultsto 1 (true), but may be set to O (false)
by the event binding. In addition, the <W i t e> event getsfired on the special tags"preWite"
and "post Wi t e" at the beginning and end of thefile, respectively, to alow an application to
write out code at the ends of thefile. Example:

.pad bind preWrite <Write> {
return " Stuff at the beginning of the file"
}
.pad bind postWrite <Write> {
return " Stuff at the end of thefile"
}
.pad bind foo <Write> {
return " Stuff after foo objects’
}
.pad bind bar <Write> {
set Pad Write O
return " Stuff instead of bar objects’
}
Thisforces al objects with the "cat” tag
to have nothing written out. Notice that an
empty string must be returned, or "0", the
result of the set command, will be written out.
.pad bind cat <Write> {
set Pad Write O
return "
}
This example a so has nothing written out,
but in addition, no other event handlers
will fire (the object could have multiple
tags, each with <Write> event handlers).
.pad bind dog <Write> {
Set Pad Write 0
break
}

<Portal I nt er cept >: Thisevent getsfired just before an event passes through a portal. If the
event handler executes the break command, then the event stops at the portal and does not pass
through. Example:

Page 25

Events will not go through portals of type "foo"
.pad bind foo <Portal Intercept> {
break

}

User -specified modifiers

Event handlers are defined by sequences as defined in the Tk bi nd reference pages. A seguence
contains alist of modifierswhich are direct mappings to hardware such as the shift key, control
key, etc. Event handlersfire only for sequences with modifiers that are active, as defined by the
hardware.

Pad++ allows user-defined modifiers where the user can control which one of the user-defined
modifiersis active (if any). The advantage of modifiersisthat many different sets of event bindings
may be declared all at once - each with a different user-defined modifier. Then, the application
may choose which set of event bindingsis active by setting the active user-defined modifier. This
situation comes up frequently with many graphical programs where there are modes, and the effect
of interacting with the system depends on the current mode.

New modifiers must be declared before they can be used with the pad addnodi f i er command
(and may be deleted if they are no longer needed with the pad del et enodi fi er command.)
Then, the modifier can be used in the pad bi nd command just like a system defined modifier.
There may be at most one active user-defined modifier per pad widget. The active user-defined
modifier is set with the set nodi fi er command (and may be retrieved with the get nodi fi er
command). The current modifier may be set to " (the default) in which case no user-defined
modifier is set. Example:

.pad addmodifier Create
.pad addmodifier Run
.pad bind all <Create-ButtonPress-1> {
Do stuff to create new objects
}
.pad bind all <Run-ButtonPress-1> {
Do stuff to interact with existing objects

}
Now the system will bein "Create" mode
.pad setmodifier Create

Now the system will bein "Run" mode
.pad setmodifier Run

[12] pat hNane bi ndtags tagOrld [type]

If type is specified, this command changes the ordering of event firings on all objects referred to by
tagOrld. Since more than one event handler may fire for a given event, this controls what order they fire
in. If typeis "general”, events fire most generally first. That is, a binding associated with the all tag is
invoked first, followed by one binding for each of the item'stags (in order), followed by a binding
associated with theitem'sid. (i.e, all, tags, id). If typeis "specific", then events fire most specific first.
That is, abinding associated with theitem’sid isinvoked first, followed by one binding for each of the
item's tags (in order), followed by a binding associated with the all tag (i.e., id, tags, all).

If tagOrld is pathName, then it does not change the ordering of any objects, but controls the default
ordering of objects created in the future.

The default event firing order for all objectsis"genera”. This command returns the current event firing

Page 26

order for the first item specified by tagOrld.
[13] pat hNane border subcommand arg ...
Thisisthe command for manipulating borders. There are several subcommands:

border all oc <bordercol or>
Allocates aborder for future use by render callbacks. A border isafake 3D border created by a
dlightly lighter and a dightly darker color than specified. Color may have any of the forms
accepted by Tk_GetColor. Thisreturns a bordertoken. (Also seether ender command for an
example of how to use a border).

border free <bordertoken>
Frees the border previously allocated by al | ocbor der .

[14] pat hNane cache subconmmand arg ...

cache in tagOrld
Forces the items specified by tagOrld to be cached in

cache out tagOrld
Forces the items specified by tagOrld to be cached out

cache configure [option [value] ...]
Configures the state of the cache manager. Option-value pairs may be specified as with the
itemconfigure command, or if no options are specified, alist of al options and values are returned.

-dir dir
Specifies the directory to use for the cache. The actual directory will be <dir>/<pid> where
pid isthe processid of Pad++. It will be removed when the process exits. The cache should
be on alocal disk for reasonable 1/O performance. It isnot set by default and caching is
disabled until the cache dir is explicitly set by the application.

-si ze size
Szeisthe total memory available to the cache manager before it starts to cache out objects. It
defaults to two megabytes. Caching can be disabled by setting size to zero.

-viewrultiple viewrultiple
Viewmultiple specifies amultiple of the view area the cache manager should use when
deciding object visibility for purposes of caching. Its default valueis 2 (so objectsvisible
within twice the view are not cache out candidates). Setting it to 1 will cause imagesto be
potentially get cached out when not in the view.

- del ay del ay
Delay specifiesthe interval (in seconds) the cache manager should check and perform any
actual cache outs. Itsdefault valueis 5 seconds. Setting it to O will cause immediate cache
outs.

The following criteria are used for caching:

* When an object has to be rendered, the cache manager is requested to cache it in if necessary
(ensures its data are in memory). Other objects may be cached out to make room for this object.

* When an object doesn't need to be rendered the cache manager marksit as a cache out candidate.

Page 27

Cache out candidates are selected by aleast-recently-rendered policy. The cache manager only selects
objects that have been marked for cache out and does not attempt to select objects currently rendered (or
visible within its multiple of the view area).

[15] pat hName center [-twostep] tagOrld [time x y [z [portallD ...1]11]

Change the view so asto center the first of the specified items so the largest dimension of its bounding
box fills the specified amount of screen (z). If -twostep is specified, then make the animation in two steps
if appropriate (i.e., points not too close). The two steps are such that it zooms out to the midpoint
between the two points far enough so that both start and endpoints are visible, and then zooms to the
final destination. If time is specified, then make a smooth animation to the item in time milliseconds. The
view is changed so that the item appears at the position determined by (X, y), both of which arein the
range (0.0 ... 1.0). Here, 0.0 represents the | eft or bottom side of the window, and 1.0 represents the right
or top side of the window. (x, y) specifies the portion of the item that should appear at the portion of the
screen, relatively. So, specifying (0, 0) puts the lower left corner of the item on the lower left corner of
the screen. (1, 1) putsthe upper right corner of the item on the upper right corner of the screen. x and 'y
default to (0.5, 0.5), i.e. the center of the screen. If alist of portallD'sis specified, change the view
within the last one specified.

id: 22 id:23

.pad center 23

[16] pat hName centerbbox [-twostep] X; Y1 Xo Yy, [tine [x y [z [portallD

Page 28

1111

Change the view so asto center the specified bounding box so that its largest dimension fills the
specified amount of screen (z). If -twostep is specified, then make animation in two stepsif appropriate
(i.e., points not too close). The two steps are such that it zooms out to the midpoint between the two
points far enough so that both start and endpoints are visible, and then zooms to the final destination. If
time is specified, then make a smooth animation to the item in time milliseconds. The view is changed so
that the bounding box appears at the position determined by (X, y), both of which arein the range (0.0 ...
1.0). Here, 0.0 represents the left or bottom side of the window, and 1.0 represents the right or top side of
the window. (X, y) specifies the portion of the item that should appear at the portion of the screen,
relatively. So, specifying (0, 0) puts the lower left corner of the bounding box on the lower left corner of
the screen. (1, 1) puts the upper right corner of the bounding box on the upper right corner of the screen.
x and y default to (0.5, 0.5), i.e. the center of the screen. If alist of portallD's is specified, change the
view within the last one specified.

[17] pat hNane cl ock [cl ockName [reset | delete]]

Creates aclock that is set to O at the time of creation. Returns the name of the clock. Future calls with
clockName return the number of milliseconds since the clock was created (or reset). Calls with reset
specified reset the clock counter to 0, and return an empty string. Calls with delete specified delete the
clock, and return an empty string.

.pad clock

clockl

.pad clock clockl

8125

.pad clock clock1l reset
.pad clock clockl

1825

.pad clock clockl delete

[18] pat hNane col or subconmand arg ...
Thisisthe command for manipulating color. There are several subcommands:

color alloc <file>
Allocates a color for future use by render callbacks. Color may have any of the forms accepted by
Tk_GetColor. Thisreturns a colortoken. (Also seether ender command).

col or free <col ort oken>
Freesthe color previoudly allocated by al | occol or.

[19] pat hNane configure [option] [value] [option value ...]

Query or modify the configuration options of the widget. If no option is specified, returnsalist
describing all of the available options for pathName (see Tk_Conf i gur el nf o for information on the
format of thislist). If option is specified with no value, then the command returns a list describing the
one named option (this list will be identical to the corresponding sublist of the value returned if no option
is specified). If one or more option-value pairs are specified, then the command modifies the given
widget option(s) to have the given value(s); in this case the command returns an empty string. Option
may have any of the values accepted by the pad command. See the section on WIDGET-SPECIFIC
OPTIONS for adescription of al the options and their descriptions.

[20] pat hName coords [-objectcoords] [-append] [-nooutput] tagOld [Xg Yg

Page 29

Query or modify the coordinates that define an item. This command returns a list whose elements are the
coordinates of the item named by tagOrld. If coordinates are specified, then they replace the current
coordinates for the named item. If tagOrld refers to multiple items, then the first one in the display listis
used. The flags may be specified in any order. Note that the coor ds command generates a<Modi f y>
event on the items modified by it (see the bi nd command for a description of the <Mbdi f y> event).
Locked items may not be modified by the coords command (see the -lock itemconfigure option). The
coor ds command can only be used on line, rectangle, polygon and portal items.

If the flag -objectcoords is specified, then all coordinates are returned in the item's local coordinate
system (i.e., asthey were originally specified). If thisflag is not specified, then all coordinates are
returned in the global coordinate system (i.e., they are transformed by that item's tranglation and scale
parameters).

If the flag -append is specified, then all the specified coordinates are appended on to the existing
coordinates rather than replacing them.

If the flag -nooutput is specified, then this command returns an empty string. Typically, the -append and -
nooutput flags are specified together when adding points to an item and time is of the essence.

set id [.pad create line -200 200]

for {set i -20} {$i <= 20} {incr i} {

set x [expr $i * 10]

set y [expr 0.5 * (i * $i)]

. pad coords -append -nooutput $id $x $y
}

[21] pat hNane create type [option value ...]

Create a new item in pathName of type type. The exact format of the arguments after type depends on
type, but usually they consist of the coordinates for one or more points, followed by specifications for
zero or more item options. See the Overview of 1tem Types section below for details on the syntax of
this command. This command returnsthe id for the new item.

The availableitem types are: Alias Items, Button Items, Frame Items, Grid Items, Group Items,
HTML Items, Image ltems, KPL Items, Label Items, Line ltems, Menu Items, Pad Items, Panel

Page 30

Items, Polygon Items, Portal Items, Rectangle Items, Scrollbar Items, Spline ltems, TCL Items,
Text Items, Text items have default event bindings which can be used for emacs-style editing of
them. Seethe section on Default Bindings for moreinfo., Note that when the -width or -height of a
textfileitem is set, the textfileitem isclipped to those dimensionsrather than being squashed or
stretched as most items are., and Textfield Items.

[22] pat hNane damage [tagOrld]
Indicates that some of the screen is damaged (needs to be redrawn). Damages the entire screen if tagOrld
is not specified, or just the bounding box of each of the objects specified by tagOrId. The damage will be
repaired as soon as the system isidle, or when the updat e procedure is called. Returns an empty string.

[23] pat hNane delete tagOrid [tagOrld ...]
Delete each of theitems given by each tagOrld, and return an empty string. Note that the del et e
command generates a<Del et e> event on the items modified by it (seethe del et e command for a
description of the <Del et e> event). Locked items may not be modified by the del et e command (see
the -lock itemconfigure option).

[24] pat hNane del etenpodi fier nodifier

WARNING: del et enpdi fi er isanobsolete command and will be removed in the next release.
Replace al usesof del et enodi fi er withthe'nodi fi er del et e command.

[25] pat hNane del etetag tagToDel ete tagOrld [tagOrid ...]
dt ag isandliasfor del et et ag

For each item specified by thelist of tagOrlds, delete tagToDelete from the list of tags associated with
theitem if it isn't already present on that list. It is possible that no items will be specified by tagOrld, in
which case the command has no effect.

This command is designed to be used in conjunction with the find command. Notice the necessity of
using eval inthisexample: eval . pad deletetag foo [.pad find withtag bar]

[26] pat hNanme dr awborder border type width X; y; X5 yo

WARNING: dr awbor der isan obsolete command and will be removed in the next release. Replace
all uses of dr awbor der withthe’r ender draw bor der’ command.

[27] pat hNane drawi nage i naget oken X y

WARNING: dr awi mage isan obsolete command and will be removed in the next release. Replace all
uses of dr awi mage withthe'r ender draw i mage’ command.

[28] pat hName drawline Xq; y; Xo Yo [Xp Yn - -]

WARNING: dr awl i ne isan obsolete command and will be removed in the next release. Replace all
usesof dr awl i ne withthe'render draw |ine ' command.

[29] pat hName dr awpol ygon X; Y1 X2 Yo [Xp Yn - - -]

WARNING: dr awpol ygon isan obsolete command and will be removed in the next release. Replace
all uses of dr awpol ygon withthe’render draw pol ygon’ command.

Page 31

[30] pat hNane drawt ext string xloc yloc

WARNING: dr awt ext isan obsolete command and will be removed in the next release. Replace all
usesof dr awt ext withthe'r ender draw text’ command.

[31] pat hNane find [-groupnenbers] [-regexp | -glob] searchConmand \
[arg arg ...] ["&&" | "||"] [searchCommand [arg arg ...]]

This command returns alist consisting of all of the items that meet the constraints specified by the
searchCommands and arg's. All found items are returned in display list order. Multiple
searchCommands may be used aslong as they are delimited by "&&" or "||". Parenthesis are allowed to
group expressions. The following characters are reserved: '&', [, '(',)', and "!". To search for these
symbols, they must be escaped. The escaping of reserved characters requires two backslashes, i.e. "\\".

If -groupmembersis specified, then group membersto also be returned, otherwise, they are not.

If -regexp is specified, this causes all of the strings in ensuing searchCommands to be treated as regular
expressions.

If -glob is specified, this causes all of the strings in ensuing searchCommands to be treated as glob-style
expressions. This means that the special character '*’ will be expanded to mean any number of any kind
of character. 1.e, ’foo*’ meansall the strings starting with 'foo’.

The find command does not return the pad surface (id #1). All digits aretreated asitemids, i.e.
".pad find -regexp withtag 5*" will look for the object with anid of 5.

Thefastest find possibleisawi t ht ag searchCommand without aregular or glob-style expression. The
slowest finds occur when regular or glob-styles expression are used on string arguments. In this case, for
every item on the surface, the regular or glob-styles expression is compared to the particular attribute of
each object.

SearchCommand may take any of these forms:

al |
Returns all the items on the pad.

above tagOrld:
Returns the items above (after) the one given by tagOrld in the display list. If tagOrld denotes
more than one item, then the lowest (first) of theseitemsin the display list is used to search
above. If the search typeisaregular expression or glob-style search which denotes more than
one item, then the first tag will be used, based on alphabetical order, and then the highest (last)
of these itemsis used to search above.

bel ow tagOrid
Returns the item just before (below) the one given by tagOrld in the display list. If tagOrld
denotes more than one item, then the first (lowest) of these itemsin the display list is used.

cl osest x y [hal 0]
Returns the items closest to the point given by x and y. If halo is specified, then any items
closer than halo to the point will be returned. Halo must be a non-negative number. If halois
not specified, then only items overlapping the point (x, y) will be returned.

withinfo info

Page 32

If aregular expression or glob-style search is used, thisreturns all the items for which their
info itemconfigure option matches the pattern info. If an exact search is used, thisreturns all
the items for which their info itemconfigure option is the same as the string info.

wi t hl ayer | ayer
If aregular expression or glob-style search is used, this returns all the items for which the
name of their layer matches the pattern layer. If an exact search is used, thisreturns all the
items in which the name of their layer is the same as the string layer.

wi t hname nane
If aregular expression or glob-style search is used, thisreturns all the items for which their
name matches the pattern name. If an exact search is used, thisreturns all the items for which
their name is equal to the string name. A nameisaURL for an HTML item, and afilename
for textfile and image items.

wi t hsti cky type
Returns all the items that are sticky type.

withtag tagOrid
If tagOrld isanumber, this returnsthat item. If aregular expression or glob-style search is
used, thisreturns all the items for which their tag matches the pattern tagOrld. If an exact
search isused, thisreturns all the items for which their tag is equal to the string tagOr|d.

wi t ht ext text
If aregular expression or glob-style search is used, thisreturns all the items for which their
text matches the pattern text. If an exact search isused, thisreturnsall the items for which
their text is equal to the string text.

wi t htype type
If aregular expression or glob-style search is used, thisreturns all the items for which their
type matches the pattern type. If an exact search is used, thisreturns all the items for which
their typeis equal to the string type.

enclosed x; y; X5 Yo
Returns all the items completely enclosed within the rectangular region given by X4, y1, Xo,
and y,. X, must be no greater then x, and y; must be no greater than y,.

overl appi ng x; yq1 Xo Yo
Returns all the items that overlap or are enclosed within the rectangular region given by x4, y4,
Xo, and y,. Xq must be no greater then x, and y; must be no greater than y,.

Page 33

.pad find withtag sel ected
52 72 92

.pad find withtag sel ected & !withtype rectangle
52 72

[32] pat hNane focus [tagOrld [portall D ...]]

Set the keyboard focus for the Pad++ widget to the item given by tagOrld. If alist of portalID's are
specified, then the item sits on the surface looked onto by the last portal. If tagOrld refersto several
items, then the focusiis set to the first such item in the display list. If tagOrld doesn't refer to any items
then the focusisn't changed. If tagOrld is an empty string, then the focus item is reset so that no item has
the focus. If tagOrld is not specified then the command returns the id for the item that currently has the
focus, or an empty string if no item has the focus. If the item sits on a different surface than pathName,
then this command also returns the pathName of the item.

Once the focus has been set to an item, al keyboard events will be directed to that item. The focusitem
within a Pad++ widget and the focus window on the screen (set with the Tk focus command) are totally
independent: a given item doesn't actually have the input focus unless (@) its pad is the focus window and
(b) theitem is the focus item within the pad. In most casesiit is advisable to follow the focus widget
command with the focus command to set the focus window to the pad (if it wasn't there already). Note
that there is no restriction on the type of item that can receive the Pad++ focus.

[33] pat hNane font subcommand [args ...]

This command is used for manipulating fonts. Fontsarespecified using alogical
font naming scheme similar to Java's, rather than using a platform-specific filename as afont name.

Font names follow the format "<facename>-<stylename>-<size>", where <facename> is the typeface,
e.g. Times, Helvetica, etc. <stylename> is"plain”, "bold", "italic", or "bolditalic". <size> is the height of
the font in pixels. <style> is optional (default is "plain™). <size> isalso optional (default is 12). Fonts are
substituted when the original cannot be located. Fonts specified using the old scheme are automatically
tranglated to this scheme. The special font name "Line" specifiesto use the Pad++ built-in line font.
Thisfont isugly, but is faster than the regular fonts. Some Example font names are: "Times',
"Helvetica’, "Times-12", "Helvetica-bold", "Times-bold-18". The font subcommands are:

font bbox string font [fontheight]
Returns alist with four elements giving the bounding box of string if it is drawn with ther ender
draw t ext command. Thelist hastheform "X, y; X, y," such that the text is within the region
bounded by x, on the left, x5 on the right, y, on the bottom, and y, on the top. The bounding box is
affected by ther ender configure -font and-font hei ght commands.

font path [[+] pat h]
Pad++ uses a search path to locate font files. Set or get the global font path used in Pad++. path is
alist of directory names, separated by spaces. Font filesin these directories are expected to have
the extension ".pfa’. The default path is/usr/lib/X11/fonts/Typel

If the’+' character isincluded, then the specified path is appended on to the existing search path.
Otherwise, it replaces the path.

font | oadbitmaps font

Attempts to load a set of X Bitmaps for font, which are used for drawing text at small sizes. e.g.
".pad | oadbi t maps Hel veti ca- Bol d".

Page 34

font maxbit mapsi ze size
Specifies the maximum size for which X font bitmaps should be loaded when the *font
loadbitmaps command is executed. This can be useful when making presentationsif you want to
force large fonts to be loaded.

font names
Returns the names of al the font faces/styles available on the current system as alist.

[34] pat hNane freeborder border

WARNING: f r eebor der isan obsolete command and will be removed in the next release. Replace
all usesof f reebor der withthe’border free’ command.

[35] pat hNane freecol or col or

WARNING: f r eecol or isan obsolete command and will be removed in the next release. Replace all
usesof f reecol or withthe’col or free’ command.

[36] pat hNane freei nage i maget oken

WARNING: f r eei mage is an obsolete command and will be removed in the next release. Replace all
usesof f r eei nage withthe’i nage free’ command.

[37] pat hNane get date
Returns the current date and time in the standard unix time format.

% .pad getdate
Wed May 29 20:01:49 1996

[38] pat hNane getgroup tagOrld
Return the group id that tagOrld is a member of. If tagOrld isnot amember of agroup, then this
command returns an empty string. 1f tagOrld specifies more than one object, then this command refers
to the first item specified by tagOrld in display-list order. (Also seethe addgr oupnenber , and
r enovegr oupmenber commands).

[39] pat hNane get | evel

WARNING: get | evel isan obsolete command and will be removed in the next release. Replace all
usesof get | evel withthe’render configure -Ievel’ command.

[40] pat hNane getmag tagOrid

WARNING: get mag isan obsolete command and will be removed in the next release. Replace all
usesof get nag dr awt ext withthe’render confi gure -nmag command.

[41] pat hNane get nodifi er

WARNING: get nodi fi er isanobsoletecommand and will be removed in the next release. Replace
al usesof get nodi fi er withthe’nodi fi er get’ command.

[42] pat hNane get pads

Page 35

Returns alist of al the Pad++ widgets currently defined.
[43] pat hNane getportal s

WARNING: get port al s isan obsolete command and will be removed in the next release. Replace
all usesof get port al s withthe'render configure -portal s’ command.

[44] pat hNane getsize tagOrld ?portallD ...?

Returns the largest dimension of the first item specified by tagOrld. If aportal list is specified, then the
size of the item within the last portal is returned.

[45] pat hNane gettags tagOrld

Return alist whose elements are the tags associated with the item given by tagOrld. If tagOrld refersto
more than one item, then the tags are returned from the first such item in the display list. If tagOrid
doesn't refer to any items, or if the item contains no tags, then an empty string is returned.

[46] pat hNane gett ext bbox string

WARNING: f r eebor der isan obsolete command and will be removed in the next release. Replace
al usesof f reebor der withthe’border free’ command.

[47] pat hNane getview [portal ID ...]

Returns the current view of the main window in "xview yview zoom" form. Here, (xview, yview) specifies
the point at the center of the window, and zoom specifies the magnification. If alist of portallD'sis
specified, than the view of the last portal is returned instead of the view of the main window. (See
nmovet o to set the current view).

.pad getview
141342

.pad ic 221 -position
81181

Page 36

group id =221

View

. (14.016 134.852 1.97919)

.pad moveto -250 -150 0.5
.pad getview

-250-150 0.5

.pad ic 221 -position
8.1125118.7531

groupid = 221

view
. (- 250, -150 0. 5)

[48] pat hNane getzoom [portal ID ...]
Returns the current magnification of the main window. If alist of portallD's is specified, than the view

of the last portal isreturned instead of the view of the main window. Thisis a shortcut for the last
parameter returned by the get vi ewcommand. (See novet o to set the current view).

Page 37

[49] pat hNane grab [-root | -path pathNane | -win winld] \
[-dim{width height}] x y wi dth height

This captures arectangular portion of the screen and makes an imagedata which can then be used to
create image items (Also seei mage [53] command and Image Items.) The gr ab command takes a
region (X, y, width, height) which specifies the areato grab. Note that y represents the top of the region.
The region can be relative to a specific Tk window, any other X window, or the entire screen. By
default, the region is relative to the pad widget window. The region actually grabbed is clipped to the
specified window (or to the screen for root grabbing.)

The window the region isrelative to can be specified with the -root, -path, or -win flags. -path isused to
specify an existing Tk window. -root is used to specify that the region is relative to screen. -win is used
to specify any X window by the window id. X window id’s can get accessed from the xlswins program
that comes with most X systems. If adimension is specified, then the image is shrunk through simple
decimation to produce the desired resolution before it is returned. Images can only be shrunk, not grown
with the dimension flag. Note that images can be distorted by setting a dimension with a different aspect
ratio than the source.

X displays support multiple display characteristics called visuals (8-bit pseudocolor, 24-bit truecolor,
etc.). Windows on the same screen can use different visuals. Because of this, grabbing from the root can
grab from different windows. If the windows have a different visual than the root, those colors of those
windows will be undefined.

Grab returns an imagedata token that could be used to create an image:
set imagedata [.pad grab O O 200 200]
.pad create inage -inage $i magedata
[50] pat hNane grid option arg [arg ...]
Thegr i d command arranges one or more objects in rows and columns and treats them asagroup. Itis
based on the Tk grid geometry manager and its behavior and Tcl syntax are very similar toit. In pad, all
grid commands are sub-commands of the pad command. See the section on GRID ITEMSfor a
complete description of this command, and how to create and use grids.
[51] pat hNane hastag tag tagOrld
Determinesif the item specified by tagOrId contains the specified tag. This command returns"1" if the
item does contains the specified tag, or "0" otherwise. If tagOrld refersto more than one item, then the
comparison is performed on the first item in the display list. If tagOrld doesn't refer to any items, then
"0" isreturned.
[52] pat hNane htm subcommand arg ...
Thisisthe command for manipulating html pages and html anchors. There are several subcommands:
htm configure tagOrlid [option [value] ...]
Configures the specified html page. Option-value pairs may be specified as with the itemconfigure

command, or if no options are specified, alist of all options and values are returned.

- sour ce (read only)
Returns the HTML source of the page

-t ype (read only)

Page 38

Returns the mime type of the page contents

- | ast changedat e (read only)
Returns the last time the html source was modified, as specified by the server.

- | engt h (read only)
Returns the length of the html source in characters.
htmM anchor configure tagOrid [option [value] ...]
Configures the specified html anchor. Option-value pairs may be specified as with the
itemconfigure command, or if no options are specified, alist of all options and values are returned.

-htm (read only)
Returnsthe id of the html page this anchor is associated with.

- i mage (read only)
Returns the image token this anchor is represented by if the anchor is an image anchor.

- i smap (read only)
Returnstrue if the anchor is an imagemap.

- nane (read only)
Returns the name of the anchor

-state
Returns the current state of the anchor (unvisited, visited, or active).

-url (read only)
The URL this anchor islinked to.

[53] pat hNane i mage subconmand arg ...

Thisisthe command for manipulating image data. 1n Pad++, the data associated with animage is
mani pulated separately from an image item. With this approach, the multiple Pad++ image items can
use the same image data. There are several subcommands:;

i mge alloc <file>
Allocates an image data for future use by image items and render callbacks. file specifies the name
of afile containing animage. i nage al | oc can awaysread gif file formats. In addition, if
Pad++ is compiled with the appropriate libraries, it can also read jpeg and tiff image file formats,
and will automatically determine the file type. The image may have transparent pixels. This returns
an image token which can be used by related commands.

i mge free <i naget oken>
Frees the image data previously alocated by i mage al | oc.

i mage nanes
Returns alist of all allocated image data tokens.

i mage configure <i nmagetoken> [option [value] ...]
Configures the specified image data. Option-value pairs may be specified as with the
itemconfigure command, or if no options are specified, alist of al options and values are returned.

- di nensi ons (read only)
Returns alist of the dimensions of the image data (width, height).

Page 39

- nane (read only)
Returns the file the image data token was created from.

- r gb (can set only to 0)
Normally, image data are stored internally with their full rgb colorsin addition to a colormap
index. Thisallowsimagesto be rendered with dithering, but takes 5 bytes per pixel. If the -
norgb option is specified, then the original rgb information is not stored with the image and
the image can not be rendered with dithering, but only takes 1 byte per pixel.

For example, the following code creates two image items that use the same image data:
set imagedata [.pad image alloc "foo.gif"]
.pad create i mage -i mage $i nagedata -anchorpt "0 0"
. pad create inage -inmage $i magedata -anchorpt "200 0"

[54] pat hNane i nfo subcommand

A command for accessing information about the pad. subcommand may be any of the following: status.
Each subcommand may have sub-subcommands and options. All the subcommands and their options
follow:

status render
This returns a debugging line specifying some information relevant to the last render. It
returns the number of objects on the surface, the number ob objects rendered in the last
render, the render level, and the time in milliseconds the |ast render took.

status sharednenory
When Pad++ is running on X, it uses X shared memory to render images quickly. This
return true if Pad++ isusing X shared memory.

[55] pat hNane isvisible tagOrld [portalld ...]

Returnstrueif the first item specified by tagOrld isvisible. If any portals are specified, then this returns
trueif theitem isvisible within the last portal on the list.

[56] pat hNane itentonfigure [-nondefaults] tagOrld [option [value] ...]
i cisandiasforitenconfigure

A command for accessing information about the pad. subcommand may be any of the following: status.
pathName i t enconf i gur e [-nondefaults] tagOrld [option [value] ...]

This command is similar to the conf i gur e command except that it modifies item-specific options for
the items given by tagOrld instead of modifying options for the overall pad widget. If no optionis
specified, then this command returns a list describing all of the available options for the first item given
by tagOrld. If the -nondefaults flag is specified, then only those options modified by an application will
be returned. If option is specified with no value, then the command returns the value of that option. If
one or more option-value pairs are specified, then the command modifies the given widget option(s) to
have the given value(s) in each of the items given by tagOrld; in this case the command returns an empty
string. If value is an empty string, then that option is set back to its default value.

The options and values are the same as those permissiblein the cr eat e command when the item(s)
were created; see the sections below starting with OVERVIEW OF ITEM TY PES for details on the legal
options. Note that thei t entonf i gur e command generates a <Mbdi f y> event on the items modified
by it (seethei t enconf i gur e command for a description of the <Mbdi f y> event). Locked items
may not be modified by thei t enconf i gur e command (see the -lock itemconfigure option).

[57] pat hNane | ayer subconmand [args ...]

Page 40

This command controls creation and deletion of layers, and provides a method to return the current
layers. Layers are used to control rendering order, and visibility. Every item sitson asinglelayer. Each
surface can have any number of layers, and the layers are rendered in sequence. In addition, each view
can specify which layers can be seen within that view (viathe - vi si bl el ayer s [67] itemconfigure
option.)

While layers are implicitly defined when they are used, this command allows the creation of alayer
before it is used, and thus ordering of layers can be defined before objects are created. There are severa
subcommands:

| ayer create <l ayer>
Creates anew layer, and givesit the name layer. There are no items on anew layer, and the layer is
put on top of all existing layers.

| ayer delete <layer>
Deletes the specified layer. If any items are on alayer when it is deleted, then all of those items are
deleted as well.

| ayer nanes
Returns alist of al the current layer names.

[58] pat hNane | ayout subcommand [args ...]

This command performs various kinds of one-time layouts. That is, it repositions and resizes objects
based on subcommands, but does not manage the objectsin the future. Attaching alayout call to a
<Modify> event provides away to define custom layout managers. The subcommands are:

| ayout align <type> [-anchor] [-coords {x y ...} [-overlaponly]] \
tagOrld [tagOrid ...]
<type> can be -l€ft, -right, -top, or -bottom

Align the specified items so that their bounding boxes line up on the specified side. If -anchor is
specified, then line up by anchor point instead of by bounding box. If coordinates are specified with
-coords, then align items to the path specified by those coordinates. Otherwise, use the item
furthest in the alignment direction to align the othersto. If -coordsis specified, then -overlaponly
may be specified which means that items should only be aligned if they overlap the specified path.
In al cases, items are aligned so the furthermost object doesn’t move. That is, if you are aligning to
the left, then all objects are moved to be aligned with the left-most object.

A simple example moves all the itemsthat have thetag "f 00" so they are aligned on top:
.pad | ayout align -top foo

| ayout distribute <type> [-space space] tagOrlid [tagOrid ...]

<type> must be "-horizontal", "-vertical", or "-coords {X; y1 X2 Y2 ...}"

Distribute the specified items so that the space between them is equalized horizontally or vertically
(by bounding box). Alternatively, -coords can be specified in which case the items will be
distributed along the path specified by the coordinates with equal spacing between items. -space
can be specified in which case the items will be distributed so there is space between each item. If -
space and -coords are specified, then the items will be distributed along with the path specified by
the coordinates with space between each item. |If the items take up more space than is available on
the specified path, they will continue along an extension of the last portion of the path.

Page 41

| ayout position [-tinme aninmationTinme] x; y; <type> x, y, tagOrid \
[tagOrid ...]
<type> must be "-ref tagOrld" or "-bbox { bbx1 bby1 bbx2 bby2}"

Position the specified objects relative to atarget object, or abounding box. Specify target point by a
point on the unit square, and specify the source point by a point on the unit square. If
animationTime is specified, then the objects are animated to their new position in the specified time
(in milliseconds).

The following code moves all the objects with thetag "f 00" so they have the same lower left
corner asitem #72. Then, al the objects with thetag "bar " are moved so that their upper right
corner is at the same position as the lower left corner of item #72.

. pad layout position 0 0 72 0 0 foo
.pad layout position 0 0 72 11 bar

| ayout size <type> [-ref tagOrld] [-scale scale] tagOrld [tagOrld ...]
<type> must be "-width", "-height"
Scal e the specified objects so that their bounding boxes are scaled (width or height) to the target. If
areference object is specified, then scale relative to that object. Otherwise, scaleto an absolute
dimension. Objects are scaled around their anchor points.

| ayout snap grid tagOrld [tagOrid ...]
Position the objects so that their anchor points are snapped to grid.

[59] pat hName |ine2spline error X; yq; ... Xp Yn

Takes the coordinates for aline, and uses an adaptive curve fitting algorithm to generate the coordinates
for a spline that approximates the line. The spline coordinates are returned. error is afloating point
number indicating how closely the spline curve should follow the line. Using a smaller error will tend to
generate a spline made with more bezier segments that follow the line more accurately. Using alarger
error will produce fewer bezier segments but the fit will be less accurate. See the section on SPLINE
ITEMS on how splines are specified in Pad++. (Also seespl i ne2l i ne.)

| [60] pat hNane | ower [-one] [-layer] tagOrld [bel owThi s]

Move al of the items given by tagOrld to a new position in the display list just before the item given by
belowThis. If tagOrld refers to more than one item then all are moved but the relative order of the moved
items will not be changed. belowThisisatag or id; if it refersto more than one item then the first
(bottommost) of theseitemsin the display list is used as the destination location for the moved items. If
belowThis is not specified, then tagOrld is lowered to the bottom of the display list. If the -oneflag is
specified, then tagOr|d is lowered down one item in display order which may or may not have avisible
effect. -one and aboveThis may not both be specified. If any items to be lowered are group members,
they are lowered within their group rather than being lowered on the pad surface. Returns an empty
string.

If -layer is specified, then rather than lowering a set of items, it lowers the layer specified by tagOrld.
(Seethel ayer [57] command for more information about layers.)

[61] pat hNane nodifier subcommand [args ...]

The modifier command manipulates the user-specified modifier for event bindings. A user-specified

Page 42

modifier is a software equivalent of the Shift, Control, or other modifier keys. They can be used to
isolate event bindings that all belong to one mode. See the documentation of the bi nd command for a
more complete description. There are several subcommands:

nodi fier create <nodifier>
Define modifier to be a user-defined modifier that can be used in future event bindings.

nodi fi er delete <nodifier>
Return the current active modifier.

nmodi fi er get
Delete modifier from the list of valid user-defined modifiers. Any event bindings that are defined
with this modifier become invalid.

nmodi fier set <nodifier>
Make modifier be the current active modifier for thiswidget. modifier must have been previously
defined withthe’'nodi fi er creat e’ command.

[62] pat hNane noveto [-twostep] xview yview zoom [time [portallD ...]]

Change the view so that the point "xview yview" is at the center of the screen with a magnification of
zoom. If xview, yview, or zoomis specified as"", then that coordinate is not changed. If -twostep is
specified, then make animation in two steps if appropriate (i.e., points not too close). The two steps are
such that it zooms out to the midpoint between the two points far enough so that both start and endpoints
arevisible, and then zoomsto the final destination. If timeis specified, then the change in view will be
animated in enough evenly spaced framesto fill up time milliseconds. If alist of portalID's are specified,
then the view will be changed within the last specified portalID rather than within the main view. The
return value is the current view. (See get vi ewto get the current view). Note that the novet o
command generates a<Mbdi f y> event if aportal’s view is changed (see the bi nd command for a
description of the <Mbdi f y> event).

[63] pat hNane noi se i ndex

Returns a repeatable noise value based on the floating-point value of index. This noise function is equal
to O whenever index is an integer. Typically, noiseis called with slowly incrementing values of index.
The closer the consecutive values of index are, the higher the frequency of the resulting noise will be.
This noise function is from Ken Perlin at New Y ork University (http://www.mrl.nyu.edu/perlin).

Example:
set coords ""
set noi sei ndex_x 0.1928
set noi sei ndex_y 100. 93982
set noiseincr 0.052342
for {set i 0} {$i < 100} {incr i } {
set x [expr 500.0 * [.pad noi se $noi sei ndex_x]]
set y [expr 500.0 * [.pad noi se $noi sei ndex_y]]
| append coords $x
| append coords $y
set noi sei ndex_x [expr $noi seindex_x + $noi seincr]
set noi seindex_y [expr $noi sei ndex_y + $noi sei ncr]

}

eval .pad create |line $coords

Page 43

[64] pat hNane padxy [-sticky] [-portals] winx winy [-gridspacing val ue]

Given awindow x-coordinate winx and y-coordinate winy, this command returns the pad x-coordinate
and y-coordinate that is displayed at that location. If -sticky is specified, the coordinate transform is done
ignoring the current view (i.e., asfor sticky objects.) If -portalsis specified, then the point (winx, winy) is
passed through any portalsit on. If -gridspacing is specified, then the pad coordinate is rounded to the
nearest multiple of value units.

[65] pat hNane pick [-divisible] [-indivisible] wnx wny

Given awindow coordinate (winx, winy), it returns the visible object underneath that point. If the point
should pass through any portals, a<Por t al | nt er cept > event will be fired which will determine if
the event will pass through that portal. By default, the pi ck command uses the divisibility of individual
groups to determine if group members should be picked. However the -divisible or -
indivisible flags (only one of which may be specified) override group’ s divisibility. If -divisibleis
specified, then group members will be picked from any group the point hits. If -indivisibleis specified,
then group objects and not group members will be picked.

% . pad create line O 0 100 100
22

.pad create rectangle 30 30 80 80
23

. pad addnodifier Pick
.pad bind all <Pick-ButtonPress-1> {
event _Press % % %W %Y %O

}
proc event_Press {i j x y obj} {
CGet the group object not the group nenbers
underneath the point x vy
set container [.pad pick -indivisible $x $y]
puts "contai ner $container object: $obj coords: ($i, $j)"
}

. pad setnodifier Pick
Now, group the line and rectangle:

% . pad create group -nenbers "22 23"
24

Page 44

(100,100)

(80,80)

(30,30) "~.

(0.0)

Now, click on the line, the system response with:
contai ner 24 object: 22 coords: (37.5, 36)

(100,100)

(80,80)

(3030) Wr_

(0.0)

Now, click on the rectangle, system response with:
contai ner 24 object: 23 coords: (66.5, 28)

Now, change the pick command as:
set container [.pad pick -divisible $x $y]:

Then click on theline:
contai ner 22 object: 22 coords: (52.5, 52)

Click on therectangle:
contai ner 23 object: 23 coords: (63.5, 30)

[66] pat hNane popcoor df rane
Pops the top frame off the stack of coordinate frames. The resulting frame on the top of the stack
becomes active. Also see pushcoor df r ame and r eset coor df r ane. Returns the frame popped off

the stack.

[67] pat hNane printtree

Page 45

Prints the current hierarchical tree of items to stdout (used for debugging). Returns an empty string.

[68] pat hNane pushcoordfranme tagOrld
pat hName pushcoordfranme x; y; X, Yo

Pushes a coordinate frame onto the stack of coordinate frames. When any coordinate frames are on the
stack, all coordinates are interpreted relative to the frame instead of as absolute coordinates. A frameisa
bounding box, and all coordinates are specified within the unit square where the unit square is mapped to
the frame.

Note that the -penwidth and -minsize and -maxsi ze itemconfigure options are al so relative to the
coordinate frame. In these cases, avalue of 1 refers to the average of the frame dimensions.

Text and images are scaled so that one line of text, or the height of the image is scaled to the height of
the coordinate frame at a scale of 1 (using the -position or -scale itemconfigure options).

For example, the following code makes 50 nested rectangles. Note that the width of the rectangles
shrinks proportionally.

for {set i 0} {$i < 50} {incr i} {
set id [.pad create rectangle 10 10 80 80 -penwi dth 2]
. pad pushcoordframe $id

}

. pad resetcoordframne
Also see popcoor df r ane and r eset coor df r anme. Returns the current coordinate frame.
[69] pat hNane rai se [-one] [-layer] tagOrld [aboveThi s]

Move dl of the items given by tagOrld to anew position in the display list just after the item given by
aboveThis. If tagOrld refers to more than one item then all are moved but the relative order of the moved
itemswill not be changed. aboveThisisatag or id; if it refers to more than one item then the last
(topmost) of these itemsin the display list is used as the destination location for the moved items. If
aboveThisis not specified, then tagOrld is raised to the top of the display list. If the -oneflagis
specified, then tagOr|d is raised up one item in display order which may or may not have avisible effect.
-one and aboveThis may not both be specified. If any itemsto be raised are group members, they are
raised within their group rather than being raised on the pad surface. Returns an empty string.

If -layer is specified, then rather than raising a set of items, it raises the layer specified by tagOrld. (See
thel ayer [57] command for more information about layers.)

Page 46

.pad raise 24

If we use the - one option:
.pad rai se -one 24

The original position turnsto be:

[70] pat hNane random mi n max
Returns a random integer between the specified min and max points, inclusively.
[71] pat hNanme read fil enane

Executes the tcl commands in the filename. If filename is created with the write command, then this
command reads the pad scene back in. Returns an empty string.

[72] pat hNane renovegroupnenber [-notransform tagOrld

Remove all items specified by tagOrId from the group they are a member of, and return them to the pad
surface. If any of the items were members of hierarchical groups, they are removed from all groups. If
any of the items are not a member of a group, then they are not affected. Items removed are added to the
pad surface just after the group in terms of display-list order.

By default, items are transformed so they don't change their location when removed from a group - even
if the group has atransformation. Thisisimplemented by transforming the item's transformation to be
theinverse of the group's transformation. If the -notransform flag is specified, thisinverse
transformation is not applied, and the item will move by the group's transformation when removed. (Also
seetheaddgr ouprenber , and get gr oup commands). Returns an empty string.

[73] pat hNane render subcomand arg ...

Ther ender command is used to manipulate the state of the renderer, and to render onto the screen

Page 47

during arenderscript. This command can only be called within arender callback.

render scale dz
Magnifies all rendering performed in the current renderscript by dz.

render translate dx dy
Trandates al rendering performed in the current renderscript by (dx, dy).

render draw border bordertoken relief width x; y; X, Yo

render draw fill edborder bordertoken relief width x; y; X, vy,
Draws afake 3D border connecting the specified coordinates. (Seebor der commands). This
command can only be called within arender callback. Border must have been previously allocated
by bor der . Typemust beoneof "r ai sed”,"fl at", "sunken", "gr oove", "ri dge",
"bar up"”, or "bar down". The’'dr aw bor der’ command draws just the border while the
'draw fill edborder’ command draws the border with the inside filled with the color of the
border. The following example creates an object that draws a border:

set border [.pad all ocborder #803030]
.pad create rectangle 0 0 100 100 -renderscript {
.pad render draw border $border raised 5 0 0 100 100

}

render draw i mage imagetoken x y
Draws the image specified by imagetoken at the point (x, y). Thiscommand can only be called
within arender callback.

render draw line X; yq X5 Yo [Xp Yn -]

Draws a multi-segment line connecting the specified coordinates. This command can only be called
within arender callback.

render draw polygon X; Y1 Xo Vo [Xy Y -]

Draws a closed polygon connecting the specified coordinates. This command can only be called
within arender callback.

render draw text string x y
Draws the specified text at the specified location. This command can only be called within a render
callback.

render configure [option [value] ...]
Configures the state of the renderer. Option-value pairs may be specified as with the itemconfigure
command, or if no options are specified, alist of al options and values are returned.

-capstyl e capstyle
Sets the capstyle of lines for drawing within render callbacks. Capstyle may be any of: "butt",
"projecting”, or "round".

-joinstyle joinstyle
Sets the joinstyle of lines for drawing within render callbacks. Joinstyle may be any of:
"bevel", "miter", or "round".

-linewidth width

Setsthe linewidth (in current units) to width for future drawing with render callbacks. The
actua width of the line will depend on the size of the object and the magnification of the

Page 48

view. If width is 0, then the line is always drawn 1 pixel wide.

-col or col or
Sets the color for future drawing with render callbacks. Color must have previously been
alocated by col or al | oc.

-font fontnane
Sets the font for future drawing with render callbacks. This affects the result of the f ont
bbox command. Fontname must specify a filename which contains an Adobe Type 1 font, or
the string "Li ne" which causes the Pad++ line-font to be used. Defaultsto "Ti mes- 12".

- font hei ght hei ght
Sets the height of the font for future drawing with render callbacks. Height is specified in the
current pad units. This affects the result of thef ont bbox command.

-l evel (read-only)
Returns the current render level. (See the sections on Refinement and Region Management
and Screen Updating in the Programmer’ s Guide for more information about render levels).

-mag (read-only)
Returns the current magnification of tagOrld for this specific render (it could be rendered
multiple timesiif visible through different portals). Magnification is defined as the
multiplication of the current view (including portals) with the object's size (from the -position
itemconfigure option).

- port al s (read-only)
Returnsthe list of the portals the current object is being rendered within.

[74] pat hNanme renderitem [tagOrld]

During arender callback triggered by the -renderscript option, this function actually renders the object.
During a-renderscript callback, if r ender i t emisnot called, then the object will not be rendered. If
tagOrld is specified, then al the items specified by tagOrld are rendered (and the current item is not
rendered unlessit isin tagOrld). This function may only be called during arender callback. Returns an
empty string.

[75] pat hNane reset coor df rane

Pops all the frames off of the coordinate stack. Results in an empty stack, so all coordinates are back to
absolute coordinates. Also see pushcoor df r ame and popcoor df r ane. Returns an empty string.

[76] pat hNane rotate tagOrld angle [xctr yctr]

Rotates all the items specified by tagOrld angle degrees. If (xctr, yctr) is specified, then all theitems are
rotated around the specified point. If the rotation point is not specified, then each item is rotated around
its anchor point. All item types are rotatable except html pages, and widgets (such as buttons, scrollbars,
and textfields). If anon-rotatable item isrotated, a Tcl error will be generated. (seethe -angle
itemconfigure option).

[77] pat hNane scale tagOrld [scal eAnpbunt [ctrx ctry [ani mationTi me]]]
Scale each of the items given by tagOrld by multiplying the size of the item with scaleAmount. Scale the

items around the item’s center, or around the point (ctrx, ctry), if specified. This command returns the
scale of thefirst item. Note that the scal e command generates a<Modi f y> event on theitems

Page 49

modified by it (see the scal e command for a description of the <Mbdi f y> event). Locked items may
not be modified by the scal e command (see the -lock itemconfigure option).

If animationTime is specified, then all the items moved will be animated over a period of animationTime
milliseconds.

[78] pat hNane set capstyl e capstyle

WARNING: set capst yl e isan obsolete command and will be removed in the next release. Replace
all usesof set capstyl e withthe’'render confi gure -capstyl e command.

[79] pat hNane set col or col or

WARNING: set col or isan obsolete command and will be removed in the next release. Replace all
usesof set col or withthe’render configure -col or’ command.

[80] pat hnane setfont fontname

WARNING: set f ont isan obsolete command and will be removed in the next release. Replaceall
usesof set f ont withthe’'r ender configure -font’ command.

[81] pat hnane set f ont hei ght hei ght

WARNING: set f ont hei ght isan obsolete command and will be removed in the next release.
Replace al usesof set f ont hei ght withthe’r ender confi gure -fonthei ght’ command.

[82] pat hnane setid tagorid id

Setstheid of an existing item to id. If tagorid specifies more than one item, then the first item is used.
Returns an empty string. This generates an error if aninvalid id is specified (i.e., if itisin use), or if
tagorid does not specify an object.

[83] pat hNane setjoinstyle joinstyle

WARNING: j oi nstyl e isan obsolete command and will be removed in the next release. Replace all
usesof j oi nstyl e withthe'render configure -joinstyl e command.

[84] pat hNane set| anguage | anguage

Sets the language to be used for callback scripts that are created in the future. All callback scripts that
have already been created will be evaluated in the language that was active at the time they were
created. Thiscommand refersto all callback scriptsincluding event handlers, render scripts, timer
scripts, zoom actions, etc. Pad++ always includes at least the Tcl scripting language, but others may be
active, depending on how Pad++ was built. This command controls whatever languages are currently
installed. The language defaults to "automatic" where it tries to guess the language based on the syntax
of the script. See the SCRIPTING LANGUAGES section in the Programmer’ s Guide for more details.
(Also seetheset t opl evel command.)

[85] pat hNane setlinew dth w dth

WARNING: set | i newi dt h isan obsolete command and will be removed in the next release.
Replaceal usesof set | i newi dt h withthe’render configure -1inew dth’ command.

[86] pat hNane setnodifier nodifier

Page 50

WARNING: set nodi fi er isanobsoletecommand and will be removed in the next release. Replace
all usesof set nodi fi er withthe'nodi fi er set’ command.

[87] pat hNane settopl evel |anguage

Sets the language that the top-level interpreter should use. Pad++ always includes at least the Tcl

scripting language, but others may be added. Returns an empty string. See the SCRIPTING

LANGUAGES section in the Programmer’ s Guide for more details. (Also seetheset | anguage
‘ command.)

[88] pat hNane slide tagOrld [dx dy [aninmationTine]]
Slide each of theitems given by tagOrld by adding dx and dy to the x and y coordinates of the item's
| transformation (i.e., their -position itemconfigure option). This command returns a string with the (x, y)
position at the item’ s anchor point. Note that the sl i de command generates a<Modi f y> event on the
items modified by it (seethe sl i de command for a description of the <Modi f y> event). Locked items
may not be modified by thes| i de command (see the -lock itemconfigure option).

If animationTime is specified, then all the items moved will be animated over a period of animationTime
milliseconds.

.set id [.pad create line 0 0 200 200]

(200,200)

(100,100)
(20, 70)
(0,0

30
FR: (R |

.pad dlide $id -80 30
20.000000 70.000000

[89] pat hNane sound subconmand args ...

Rudimentary sound support is available for the Irix (SGI) and Linux platforms. Currently, only ".au"
sound file formats are supported. By default, Pad++ is built without sound. Seethe README file for
instructions on building Pad++ with sound. The following subcommands implement sound:

.pad sound load file
This command loads a sound file, and returns a sound token that can be used to play the sound later.

. pad sound play sound_t oken [-vol une vol une]
Thiswill play asound specified by sound_token which is a sound loaded with the"sound | oad"
command. This returns atoken that is used to stop the sound if needed. If volume is specified (at a
range of [0-100]), then the sound is played at the given volume (temporarily overriding the system
configuration). Short sounds are played asynchronously. There are no guarantees, but in practice,
sounds under about a half second are played in the background, and this function immediately. In
the future, there will be better control over this.

Page 51

. pad sound stop play_token
This stops the sound referenced by play token

. pad sound configure [option [value] ...]
- sounds (read-only)
Thisreturns alist of the currently loaded sounds.

-vol ume nast er

-volume{l eft right}
This sets the volume of all soundsto be played. If asingle parameter isgiven, it istreated as
the master volume, and sets the sound for both channels. If two parameters are given (asa
two-element list), they set the left and right speaker volumes separately. In all cases, this
returns alist of the left and right speaker volumes. Volumes are specified in the range [0-100].

[90] pat hNanme spline2line error xq ¥q ... Xu Yn

Takes the coordinates for a spline and uses an adaptive bezier algorithm to generate the coordinates for a
line that approximates the spline. error is how much error is allowed - asmall error produces a greater
number of points and more accuracy. A large error yields fewer points but the lineis less accurate. See
the section on SPLINE ITEMS for details on how splines are created. (Alsoseel i ne2spli ne.)

[91] pat hNane text tagOrld option [arg ...]

Allows interaction with all text item types. Thisincludestext, textfile, textfield, and textareaitems. See
TEXT ITEMS for adescription of indices and marks. tagOrld specifies the text item to apply the
following command to. Option and the args determine the exact behavior of the command. Note that the
t ext command generates a<Modi f y> event on the items modified by it (seethet ext command for a
description of the <Modi f y> event). Locked items may not be modified by thet ext command (see
the -lock itemconfigure option). The following command options are available:

econpare indexl op index2

Compares the indices given by index1 and index2 according to the relational operator given by op,
and returns 1 if the relationship is satisfied and O if it isn't. Op must be one of the operators <, <=
==, >=, >, or !=. If op is==then 1 isreturned if the two indices refer to the same character, if op
is<then 1isreturned if indexl refersto an earlier character in the text than index2, and so on.

edel ete indexl [index2]

Delete arange of characters from the text. If both index1 and index2 are specified, then delete all
the characters starting with the one given by index1 and stopping just before index2 (i.e. the
character at index2 is not deleted). If index2 doesn't specify a position later in the text than index1
then no characters are deleted. If index2 isn't specified then the single character at indexl is
deleted. The command returns an empty string.

eget indexl [index2]

Return a range of characters from the text. The return value will be all the characters in the text
starting with the one whose index is index1 and ending just before the one whose index is index2
(the character at index2 will not be returned). If index2 is omitted then the single character at
index1 is returned. If there are no characters in the specified range (e.g. index1 is past the end of
the file or index2 is less than or equal to index1) then an empty string is returned.

*index index [char]

Page 52

Returns the position corresponding to index in the form line.char where line is the line number and
char is the character number. If char is specified, then the position is returned in the form char
which is the character index from the beginning of the file. Index may have any of the forms
described under INDICES.

*i nsert index chars
Inserts chars into the text just before the character at index and returns an empty string.
emark option [arg arg ...]

This command is used to manipulate marks. The exact behavior of the command depends on the
option argument that follows the mark argument. The following forms of the command are
currently supported:

mar k nanes
Returns alist whose elements are the names of all the marks that are currently set.
mark set mar kName i ndex

Sets the mark named markName to a position just before the character at index. If markName
already exists, it ismoved from its old position; if it doesn't exist, anew mark is created. This
command returns an empty string.

mar k unset mnar kName [mar kName ...]

Remove the mark corresponding to each of the markName arguments. The removed marks
will not be usableinindices and will not be returned by future callsto pat hNane nar k
nanes. This command returns an empty string.

[92] pat hNane tree subcomand [args ...]

This command creates, maintains, and animates dynamic trees of Pad items. Items are created by other
pad functions, and are placed into hierarchical tree structures to be managed by this code. These trees
support afocus + context viewing structure, multiple foci, and a focus function which has a controlled
level of influence on the tree.

Each node has alayout object associated with it which controls the position and resizing of the pad item
at that node during alayout. Each layout controlsalink item - a pad item created by the tree code, which
graphically connects the node to its parent. Thislink item is maintained automatically by the tree code,
but may be accessed and manipulated through the t r ee subcommand.

Each pad has a treeroot object, which isalist of all pad tree nodes on the surface. Each of these "root
nodes' is an invisible treenode which controls certain subtrees on the pad surface. Thisorganizationis
necessary to keep trees independent. Animation done at a node affects that node and its children, so we
need to be careful to organize the nodes in such away that all nodes we wish to "know" about each other
are connected in some manner. Separate hierarchies can be made to "avoid" each other during animation
by connecting them together under an invisible root node. When the layout function is called on the root
node, both hierarchies will be laid out according to the layout object which resides at the root node.

A dynamic tree supports an arbitrary number of foci. Management of these foci isleft up to the user. A

node's focus is spread by a function which has several parameters. Seetheset f ocus subcommand for
more information.

Page 53

Manipulation of the tree structure fallsinto four parts - tree management, layout, animation control, and
parameter control.

Tree Management

A tree can be added to by creating new nodes and adding them to the existing tree structure. Nodes and
subtrees can be moved within trees. Nodes and subtrees can be deleted, which will also delete the pad
item associated with the treenode. Nodes and subtrees can be removed, which simply removes the
treenode associated with the object, but |eaves the object itself alone.

L ayout

The default layout provided with the current version of this code creates a hierarchical treeinwhich a
node's children are laid out to the right of the node. Thislayout prevents any overlapping of nodes by
calculating the bounding box of the subtree rooted at a node, and laying out nodes so that these bounding
boxes do not intersect.

Animation control
A tree dways animates its members. It may aso animate the view at the same time the members are
being animated.

Parameter control.
There are avariety of parameters associated with the layout at a node, and the control of animation of a
tree.

Trees are created and manipulated through the tree subcommands:

addnode childtagOrld parenttagOrld
Adds childtagOrld to parenttagOrld as a child. If childtagOrld already has a parent, this
command also removes childtagOrld from that parent. When it is added to the tree, the item's
current zoom is recorded, and is used in al future calculations in the dynamic tree layouts.
Thismeansthat an item's size when it is added to the tree is the size that it will have when it
has afocusof 1.0. (Seethetree set scal e command to modify the size of an item after it
has been added to atree.)

ani mat el ayout tagOrld [-view view
Used in conjunction with computelayout, this command performs the animated layout of a
tree. It may be given aview, which forces the system to animate the system view while the
tree animation istaking place. Useget | ayout bbox to calculate aview for the finished
animation. Seeconput el ayout for specific implementation instructions.
Using ani mat el ayout with the -view option forces an animation of the view asthetreeis
animating. The view animates from the current view to the one specified as the tree animation
istaking place.

ani mat evi ew tagOrid [val ue]

Sets the animateView flag at tagOrld. Controls whether or not alayout will animate the view
when layout is called at tagOrld.

connect tagOrld

Draws links from tagOrld to its parent, and from tagOrld's children to tagOrld.

Page 54

conput el ayout tagOrid

Computes the final layout state for adynamic tree. This placesfinal layout state information
in the tree, some of which can be accessed in order to control the layout. For information on
accessing some of thisinformation, seethe get | ayout bbox command.

This code computes the future layout of atree, then animatesiits view so that the center of the
tagOrld's future position isin the center of the screen at the end of the animation. Note that
any treenode which is a descendant of tagOrld will return valid information on a call to get

| ayout bbox. Other nodes are not guaranteed to have valid information.

.pad tree conputel ayout $node

set futureBbox [.pad tree getlayout bbox $node]
set view [bbcenter $futureBbox]

.pad tree ani matel ayout -view $view

create tagOrld

Creates a treenode to monitor tagOrld. Creates default layout for treenode. Adds tagOrld to
the padroot, in preparation for placement somewhere elsein the hierarchy.

cr eat er oot
Creates an invisible root node which is used to organize subtrees of information, and returns
the pad id of the dummy object at that node. Used to connect several nodes together so that
they appear to be root nodes at the same level. Because thisis an invisible node, no links will
be drawn to it.

delete [-subtree] tagOrld
Delete the tagOrld and its associated pad object, layout, and link. By default, when thereis
no subtree option, tagOrId's children are promoted to be children of tagOrId's parent. If the -
subtree option is used, the entire subtree and al of its associated data and pad objects are
deleted.

getchildren tagOrld
Returns alist of the ids of the pad objects which are children of tagOrid

getfocus tagOrld
Returns the focus value at atagOrld, which is a number on the interval [0.0, 1.0]

get | ayout bbox tagOrld
Returns the approximate bbox tagOrId will have at the end of the current animation. Thisis
only valid when used after conput el ayout , and before any manipulation of any member
of thetree. Moving or resizing any object affected by conput el ayout will cause afew
bugs in the animation of those objects when ani mat el ayout iscaled. The system will not
break, but any moved object will first instantly move to the position it held when
conput el ayout was called, and then will animate to the position conput el ayout

determined for that object. Relative sizing of objects will be ignored by the system.

getlink tagOrld

Page 55

Return the id of the item which graphically links tagOrld to its parent.
get parent tagOrld

Return the id of the parent of tagOrld.
getroot tagOrld

Gets the root node of tagOrld's hierarchy - the node which resides just below the padroot.
i snode tagOrid

Returns a boolean indicating whether or not tagOrld has a treenode attached to it, and is
therefore a member of a hierarchy.

[ayout tagOrld [-view view

Performs arecursive layout of the subtree rooted at tagOrld. If the -view option is used, the
tree will animate to the view provided.

lower tagOrld [bel omt agOrld]
Controls the position of tagOrld in the order of its siblings. If belowtagOrld is not provided,
tagOrld is moved to the bottom of the list. If belowtagOrld is provided, tagOrld is moved to
aposition just above (after) belowtagOrld.

rai se tagOrld [abovetagOrld]
Controls the position of tagOrld in the order of its siblings. If abovetagOrld is not provided,
tagOrld is moved to the top of thelist. If abovetagOrld is provided, tagOrld is moved to a
position just above (after) abovetagOrld.

renovenode [-subtree] tagOrld
Removes the treenode and layout objects associated with tagOrld. If the -subtreeis not
included, tagOrld'sinformation is removed, and tagOrId's children are promoted. If the -
subtree option is used, the entire treenode hierarchy is removed.

reparent [-subtree] tagOrlid parenttagorid
Reparents tagOr|d to belong to parenttagorid. The default case, in which the -subtree option
is not used, reparents tagOr1d, and promotes any children tagOrld may have to be children of
tagOrld's original parent. If the -subtree option is used, the subtree rooted at tagOrlid is
moved.

set ani mat espeed tagOrlid mlliseconds
Sets the time for an animation to occur. If this number is 0, the animation will proceed
immediately to the end state. During an animation, if any event is detected, the animation will
proceed to the end state. Thus, a double click on atreenode forces the animation to happen

instantaneously.

setfocus tagOrld [value [levels [falloff]]]

Page 56

Set the focus value at atagOrld. This must be a number on therange [0,1]. If novalueis
provided, the focusis set to 1.0. The levels parameter controls the number of levelsthisfocus
isallowed to spread. The falloff parameter is a multiplier which controls the portion of focus
which is passed on to the next level of recursion. For example, if this number is0.75, then
focus*0.75 of the focus is passed on at the next level of recursion.

setfocusmag tagOrid val ue

Recursive set command - works on the entire subtree of the tagOrld isis given. Set the
magnification difference between an object of focus 0 and an object of focus 1.

setl i nknode node

If modeis"fi xed", this sets the penwidth of treelinks to fixed width 1 pixel. If modeis
"scal i ng", then penwidth scales. The changeis applied to all descendants of the specified
treenode

setscale tagOrld val ue

Set the scale that an object will have whenitsfocusis 0. Thisisthe smallest size that an
object will have in adynamic tree. When atreetagOrld is created, thisvalue is automatically
set to the z value of the object.

setspaci ng tagOrld xval ue [yval ue]

Set the x and y spacing at atagOrld. Thisisthe amount of spacing between atagOrld and its
spatial neighbors.

[93] pat hNane type tagOrid

Returns the type of the item given by tagOrld, such asrectangle or text. If tagOrld refers to more than
one item, then the type of thefirst item in the display list isreturned. If tagOrld doesn't refer to any items
at all then an empty string is returned.

[94] pat hNane update [-di ssol ve speed [withRefinenment]]

This forces any outstanding updates to occur immediately. If the -dissolve flag is specified, then speed
determines how quickly the update is done. If speed is O, the update will happen quickly with a swap
buffer. If speed is between 1 and 3, the update will happen with a dissolve effect where 1 is the fastest
and 3 isthe slowest. If the withRefinement flag is specified, this forces all refinements to occur
immediately as well - which could be a slow process. Returns an empty string.

[95] pat hNane url fetch URL ?option value ...?

pat hName url fetch Token

where valid options are:
-file <fil enanme>

-var <vari abl e>
- updat escri pt <updateScri pt >
-donescri pt <doneScri pt>
-errorscript <errorScript>

Retrieves the specified URL (Universal Resource Locator) from the World Wide Web. This command
returns immediately, and the retrieval is done in the background (within the same process using afile

Page 57

handler.) As portions of the data comes in, updateScript will be executed, and doneScript will be
executed when all of the data has completely arrived. If there are any errorsretrieving the data, then
errorScript will be executed. ur | f et ch returns atoken that can be used to interact with thisretrieval.
Thistoken is appended to updateScript, doneScript and error Script when the scripts are executed.

There are three methods to access the data retrieved by urlfetch. The first method is to specify afile
(with -file) in which case the data is written to that file asit isretrieved. The second method is to specify
aTcl variable (with -var) in which case the datais stored in that global variable asit isretrieved. The
variable will be updated with the current data before updateScript and doneScript are executed. Note
that the variableis not cleared by ur | f et ch and it isthe responsibility of the caller to freeit (with
unset). Thethird method isto use the second form of ur | f et ch by passing it url token during an
updatescript callback in which case it will return the data retrieved by that fetch. Three code segments
follow which show the use of urlfetch.

#
urlfetch example using a file
#
proc done {filenanme token} {
set file [open $filename "r"]
handle file
}
set file "foo"
.pad urlfetch http://wwmv.cs.unmedu -file $file \
-donescri pt "done $file"

#
urlfetch exanmple using a Tcl global variable
#
proc done {token} {
gl obal foo

handle data in "foo"
unset foo ;# no | onger need URL data
}
.pad urlfetch http://ww.cs.unmedu -var foo \
-donescri pt "done"
#
urlfetch exanple using a token to increnentally
handl e data as it cones in.
#
proc update {token} {
set data [.pad urlfetch $token]
handl e i ncremental data
}
.pad urlfetch http://ww.cs.unm edu \
- updat escri pt "update" -donescript "done"

[96] pat hNane warp dx dy
This moves the core pointer relative to its current position by (dx, dy) pixels. Moving the pointer is often
called "warping”, and thus the name of the command iswarp. Note that generally speaking, warping the

cursor isfrowned upon in user interfaces, but this command is supplied as there are some cases where it
isok.

Page 58

[97] pat hName wi ndowshape [innercoords outercoords]

Changes the shape of the top-level window containing the Pad++ widget specified by pathName. The
two parameters each specify lists of coordinates that specify the shape of the window. All coordinates are
scaled to fit the existing width of the window, larger numbersin X go to the right, and larger numbersin
Y go up. innercoords represents the area that can be painted in, and outercoords represents the overall
window shape. The difference between these two shapes becomes the windows border. If innercoords
and outercoords are both empty strings, then the window returns to its default rectangular shape. This
command returns the current window shape. If window has the default shape, it returns {} {}.

For example, the following command changes the top-level window shape to an inverted triangle.

. pad wi ndowshape {0 50 50 50 25 0} {0 50 50 50 25 0}

__

+File Edit Arrange Object Font Tools Debug Demo Help

Q.

[98] pathNane write [-format type] [-relative] file [tagOrld tagOrid ...]

Writes out all the items on the Pad++ surfaceinto file. If tagOrld's are specified, then just those items are
written out. Thefile that iswritten out should be read back in with the read command. If fileis an empty
string, than this command returns a string containing the data instead of writing it to afile. If avalid
filename is specified, then this command returns an empty string. Only non-default slots of each object
are written out.

Files may be written in different formats (all of which can be read with ther ead command.) If typeis
"text", then the Tcl code that is used to recreate the itemsiswritten. If typeis"binary-interchange”, then
acustom binary format is used. Both formats are intended to be readable by all future versions of
Pad++. Thetext format is somewhat larger and slower to read, while the binary format is somewhat
smaller and faster to read. The binary file format is described in the document doc/fileformat.txt.

If the -relative flag is specified, then all referenced files (such as textfiles and images) are referenced
with filenames relative to the file that is saved. This makesit easier to move files between machines as
an entire directory structure with the images can be copied, and the pad files will still work. If the -
relative flag is not specified, then all referenced files are referenced with absolute pathnames.

Asthe write command writes out objects on the pad, it generatesa<W i t e> event for each item it
writes. The return string from the <W i t e> event handler will be appended to whatever string this

Page 59

function writes out for each item. See the bind command for more information on this.
[99] pat hNane zoom zoontact or padXl oc padYloc [animateTine [portalID ...]]

Zoom around specified pad position by multiplicitive factor. If animateTime is specified, then animate
the zoom and take animateTime milliseconds for the animation. If an optional list of portalsis specified,
then change the view within the last portal. The entire list is necessary in case the last portal is sitting on
adifferent surface then this function is called with. Returns an empty string.

Overview of Item Types

The sections below describe the various types of items supported by Pad++. Each item type is characterized by two
things: first, the form of the command used to create instances of the type; and second, a set of itemconfiguration
options for items of that type, which may be used in the cr eat e and i t entonfi gur e widget commands. See
thei t enconf i gur e command for the syntax to use these options.

The availableitem types are:

Alias, Button, Canvas, Checkbox, Checkboxmenuitem, Choicemenu, Frame, Grid, Group, HTML, Image,
KPL, Label, Line, Menu, Menubar, Menuitem, Oval, Pad, Panel, Polygon, Portal, Rectangle, Scrollbar,
Spline, Tcl, Text, Textarea, Textfield, Textfile, and Window.

Severa of the items are designed to mirror the functionality and usage of the standard widgets in Java’'s Abstract
Windowing Toolkit (AWT). They are also accessible from Tcl along with all the other item types. These include:

Button, Canvas, Checkbox, Checkboxmenuitem, Choicemenu, Frame, Menu, Menubar, Menuitem, Panel,
Scrollbar, Textarea, Textfield, and Window.

Item Options

Every item has several options that can be configured. Some options are available for al item types, and some
options are available for just specific item types. All the options are summarized here followed by a complete
description of each option. Afterwards, each item type is described with a list of which options apply to that item
type.

Thisis asummary of every itemconfigure option in aphabetical order. Each option either applies to every possible
item type, or has alist of item types to which it applies

-aliases [1] (Read-only) Returns all aliases of the item

-al waysrender [2] Trueif theitem must be rendered, even if the system is slow and the item is small
-anchor [3] The part of theitem that - posi t i on refersto

-anchorpt [4] The (x, y) portion of - posi ti on

-angl e [5] Specifies absolute rotation of item

-angl ectr [6] Specifies absolute rotation of item, rotating about specified point

-arrow [7] Whether to draw arrow heads with thisitem

(Available only for line, spline types)
-arrowshape [8] Theshapeof drawn arrow heads
(Available only for line, spline types)

-bb [9] A script that gets evaluated to specify the bounding box of an item
(Available only for kpl, tcl types)
-border [10] Specifies border color of item

(Available only for html, portal types)
-borderw dt h [11] Specifieswidth of border

Page 60

-capstyle [12]

-clipping [13]
-comand [14]

-di t her [15]

-di vi si bl e [16]
-donescript [17]
-editable [18]
-errorscript [19]
-events [20]
-faderange [21]
-file [22]

“fill [23]

-font [24]
-from[25]

- hei ght [26]
-htm [27]

-ht m anchors [28]
-image [29]

-info [30]
-ismap [31]

-joinstyle [32]

-layer [33]
-linesize [34]

-l ock [35]
-1 ookon [36]

- maxsi ze [37]
-menbers [38]

(Available only for html, portal types)

Specifies how to draw line ends

(Available only for line, spline types)

Controlsif items are clipped to their bounding box when rendered
Callback for widgets

(Available only for button, command types)

Render with dithering

(Available only for image types)

Trueif events go through a group to its members

(Available only for frame, grid, group, html, panel types)

A script to evaluate when a background action has completed
(Available only for html types)

Trueif text item is editable

(Available only for text, textfile, textfield types)

A script to evaluate when a background action has an error
(Available only for html types)

Trueif item receives events, false otherwise

Range over which an item fadesin or out

File an item should be defined by

(Available only for textfile types)

Specifiesfill color of item

(Available only for button, frame, html, label, scrollbar, panel, fill, polygon, portal,
rectangle, textfield types)

Specifies font to use for text

(Available only for button, html, label, portal, text, textfile, textfield types)
Starting value of valuator widget

(Available only for scrollbar types)

Height of anitem. Normally computed, but can be set to squash/stretch item
The HTML item associated with an htmlanchor

(Available only for htmlanchor types)

The anchors associated with an HTML page

(Available only for html types)

Image data associated with item (allocated by image aloc)
(Available only for htmlanchor, image types)

A place to store application-specific information with an item
Trueif an htmlanchor is an image map

(Available only for htmlanchor types)

Specifies how to draw the joints within multi-point lines
(Available only for line, spline, oval, polygon, rectangle types)
Thelayer anitemison

Amount widget should change to represent a line change
(Available only for scrollbar types)

Locks an item so it can not be modified or deleted

Specifies the pad widget this item sees

(Available only for portal types)

The maximum size an item is rendered it (absolute or relative to window size)
The list of members of agroup

(Available only for frame, group, html, panel types)

- menber | abel s [39] List of labelsfor apull-down or pop-up menu

- menubar [40]

-m nsi ze [4]]
- noi sedat a [42]

(Available only for menu and choicemenu types)

Menubar associated with aframe

(Available only for frame types)

The minimum size an item is rendered it (absolute or relative to window size)
Specifies parameters to render item with noise

Page 61

(Available only for line line types)
-orientation [43] Orientation of widget (horizontal or vertical.)
(Available only for scrollbar types)
- pagesi ze [44] Amount widget should change to represent a page change
(Available only for scrollbar types)
- pen [45] Specifies pen color of item
(Available only for button, label, line, spline, oval, polygon, portal, rectangle, text
textfile, textfield types)
- penwi dt h [46] Specifies width of pen
(Available only for line, spline, oval, polygon, rectangle types)
-position [47] The absolute position of the abject (x, y, scale)
-reference [48] Whatitem an alias references
(Available only for alias types)
-relief [49] Specifies how border should be rendered (raised, flat, sunken, ridge, groove)
(Available only for button, portal types)
-renderscript [50] A script that gets evaluated every time an item is rendered
-rposition [51] Therelative position of the object (to groups)

-scal e [52] The (scale) portion of - posi ti on
-state [53] State of an item (such as visited, unvisited, etc.)
(Available only for button, htmlanchor types)
-sticky [54] Specifiesif an item should stay put when the view changes
-tags [55] List of tags associated with an item
-text [56] The text of any item containing text

(Available only for button, label, text, textfile, textfield types)
-timerrate [57] Frequency timerscript should fire
-timerscript [58] Scriptassociated with an item that fires at regular intervals

-title [59] Some items only: Title of an item
(Available only for portal types)
-to [60] Ending value of valuator widget

(Available only for scrollbar types)
-transparency [61] Transparency of anitem. Oiscompletely transparent, 1 is completely opague
- updat escri pt [62] A script to evaluate when a background action has made progress

(Available only for html types)

-url [63] The URL associated with an item
(Available only for html, htmlanchor types)

-val ue [64] Current value of valuator widget
(Available only for scrollbar types)

-Vview [65] Specifies the view thisitem sees

(Available only for pad, portal types)
-viewscript [66] A scriptthat gets evaluated whenever the view is changed
-vi si bl el ayers [67] Thelayersthat are visible within this view (just for portals and surface, item #1)
(Available only for pad, portal types)
-width [68] Width of an item. Normally computed, but can be set to squash/stretch an item
-witeformt [69] Controlswhether disk-based item iswritten out by copy or reference
(Available only for image types)
-zoonmaction [70] A scriptthat gets evaluated when an item is scaled larger or smaller than a set size

Thisisalist of every itemconfigure option with their complete definition in alphabetical order.

[1]-al i ases (read-only)
(Availablefor al item types)

Thisreturns all the alias items that reference this item.

Page 62

[2] - al waysrender bool ean
(Availablefor al item types)

The rendering engine may decide to not render an item for reasons of efficiency (although it may get
rendered at higher levels of refinement). When thisflag is set (i.e., equals 1), the item will be rendered no
matter how big it is (aslong asit is bigger than its -minsize. Defaults to false (0).

[3] -anchor anchor Pos
(Availablefor al item types)

AnchorPos tells how to position the object relative to the positioning point for the item (see -

posi ti on); it may have any of the forms accepted by Tk_GetAnchor. For example, if anchorPosis
"center” then the object is centered on the point; if anchorPosis"n" then the object will be drawn so that
its top center point is at the positioning point. This option defaults to center.

[4] -anchorpt {x y}
(Availablefor al item types)

Thisisan aliasfor the first two elements of the -position itemconfigure option. (X, y) specifies the anchor
point of theitem. This means that the item will be positioned so that its anchor (north, center, southwest,
etc.) will appear at the specified anchor point. (x, y) are absolute quantities, independent of the current
view and independent of any group membership. (Also seethe- anchor,-position,-rposition,
and - scal e itemconfigure options.)

[5]-angl e angl e
(Availablefor all item types except HTML and widgets)

Sets the absolute rotation of an item in degrees. Theitem isrotated around its anchor so that it is rotated
angle degreesrelative to its creation. (Also seether ot at e command.)

[6]-angl ectr {angle xctr yctr}
(Availablefor all item types except HTML and widgets)

Sets the absolute rotation of an item in degrees. Theitem isrotated around the point (xctr, yctr) so that it
isrotated angle degrees relative to its creation. (Also seether ot at e command.)

[7] -arrow where
(Available only for line, spline types)

Indicates whether or not arrowheads are to be drawn at one or both ends of the line. where must have
one of the values"none" (for no arrowheads), "f i r st " (for an arrowhead at the first point of the line),
"l ast " (for an arrowhead at the last point of theline), or "bot h" (for arrowheads at both ends). This
option defaultsto "none".

[8] - arrowshape shape
(Available only for line, spline types)

This option indicates how to draw arrowheads. The shape argument must be alist with three elements,
each specifying adistance. Thefirst element of the list gives the distance along the line from the neck of
the arrowhead to itstip. The second element gives the distance along the line from the trailing points of
the arrowhead to the tip, and the third element gives the distance from the outside edge of the line to the
trailing points. If this option isn't specified then Pad++ picks a "reasonable” shape.

Page 63

[9] - bb boundi ngboxScri pt
(Available only for kpl, tcl types)

A script that will be evaluated to compute the bounding box of thisitem. For Tcl, It should return a4
element list whose members are "x4 y1 X, Yo" which are the lower left and upper right corners of this

items bounding box. For KPL, It should return two two-element vectors that specify (X1 Y1), (X2, ¥2).

[10] - border col or
(Available only for html, portal types)

Color specifiesa color to use for drawing the border of the portal; it may have any of the forms accepted
by Tk_GetColor. If color is"none", the outline will not be drawn. This option defaults to the fill color.

[11] - borderwi dth wi dth
(Available only for html, portal types)

Width specifies the width of the border in current unitsto be drawn around the item. Wide borderswill
be drawn compl etely inside the path specified by the points of this object. Note that thisis different than
pens. If width is O, then the border will always be drawn one pixel wide, independent of the zoom. Width
defaultsto 1 pixel.

[12] -capstyl e cap
(Available only for line, spline types)

Specifies how the ends of the line are drawn. cap may be one of:

* but t : The ends are drawn square, at the end point.
* proj ect i ng: The ends are drawn square, past the endpoint.

 r ound: The ends are rounded.

[13] -cli pping bool ean
(Availablefor al item types)

By default, built-in items (such as lines, text, etc.) do not get clipped to their bounding box, and
procedural items (items with -renderscripts) do. This flag turns clipping on or off. Be warned, that
turning off clipping for a procedural object is dangerous. If you draw outside the object's bounding box,
you can end up with screen garbage. Defaults to true (1) for items with -renderscripts, and false (0) for
all other items.

[14] - command scri pt
(Available only for button, command types)

A script that gets executed when the widget is activated. The definition of activation for each widget is
different. For example, a button is activated when it is pressed and rel eased while the pointer is still over
the button. A scrollbar is activated whenever the thumb is moved. Some widgets append information
about the activation on the end of the script (for instance, scrollbars append the current value). Seethe
description of each widget for information about this.

[15] - di t her dithernode
(Available only for image types)

Page 64

Specifies if and when the image is rendered with dithering. Dithering is arendering technique that
allows closer approximation to the actual image colors, even when the requested colors are not

available. Rendering images with dithering is much slower than without, so this option alows control as
towhen (if at al), dithering is used. dithermode may be any of

e nodi t her : Theimageis never rendered with dithering.
« di t her : Theimage is aways rendered with dithering.

e refinedither: The image is initially rendered without dithering, and then refined with
dithering.

Defaults to refinedither (dither only on refinement).

[16] - di vi si bl e bool ean
(Available only for frame, grid, group, html, panel types)

Specifies whether events should go to the grid members. If -divisibleis 1 (true), events never go to the
grid object, but pass through it to the members. If the event is within the bounding box of the group, but
does not hit any members, then it will be ignored by the group. If -divisible is O (false), then the event
will go to the group if it iswithin the bounding box of the group whether there isa member at the place
the event points to or not. Defaultsto 1 (true).

[17] - donescri pt script
(Available only for html types)

If script is specified, it gets evaluated when the html item has completed loading - including all in-line
images. script is postpended with the id of the html object. Thisis necessary because the script is
typically specified on the create line where the id of the html object is not yet known.

[18] - edi t abl e bool ean
(Available only for text, textfile, textfield types)

If editableis TRUE, then the item’ s default event handlers will allow the item to be edited. This applies
only to text widgets. Default text editing includes mouse copy and paste, and uses basic emacs-like
bindings for manipulating the cursor.

[19] -errorscript script
(Available only for html types)

If script is specified, it gets evaluated if thereis an error creating the html item. An error can occur for
many reasons - especially because creating an html typically starts a network communication process for
fetching the URL. script is postpended with the id of the html object. Thisis necessary because the
script istypically specified on the create line where the id of the html object is not yet known.

[20] - events bool ean
(Availablefor al item types)

Controls whether an item receives input events. If set to false (0), it does not respond to events. Defaults
to true (1).

[21] - f ader ange val ue
(Availablefor al item types)

Page 65

Controls over how long a period an item fades out as it approaches its minimum or maximum size. value
specifies this period as a percentage of the object's size (from 0.0 to 1.0). Where 0.0 means that the item
doesn't fade out al, it just blinks off when its extreme is reached, and 1.0 meansthat it slowly fades out
over its entire range of sizes. Defaultsto 0.3. (Also see the -minsize and -maxsize itemconfigure options.)

[22]-file fil eNane
(Available only for textfile types)

fileName specifies the filename to read a text file from.

[23]-fill color
(Available for button, frame, html, label, scrollbar, panel, fill, polygon, portal, rectangle, textfield types)

Fill the background of the html item with color, which may be specified in any of the forms accepted by
Tk_GetColor. If color is"none", the background will not be drawn. It defaults to the background of the
Pad++ widget it is created on.

[24] -font fontnane
(Available only for button, html, label, portal, text, textfile, textfield types)

Specifies the font to be used for rendering text for thisitem. fontname must specify afilename which
contains an Adobe Type 1 font, or the string "Li ne™ which causes the Pad++ line-font to be used.
Defaultsto "Ti nes- 12".

[25] -from val ue
(Available only for scrollbar types)

Specifies the starting (lowest) value for a valuator widget to use. (Also seethe-to,-11i nesi ze and -
pagesi ze itemconfigure options.)

[26] - hei ght hei ght
(Availablefor al item types)
By default, the height of every item is automatically computed based on its contents. If the- hei ght
option is set, however, then this overrides the automatically computed value. Most items are squashed or
stretched to fit the specified height. Note that text and alias items, however, are clipped instead of being
squashed or stretched. (Also seethe - wi dt h itemconfigure option.)

[27]-ht
(Available only for htmlanchor types)

Returns the html item this anchor belongsto. Thisisaread-only option.

[28] - ht M anchor s
(Available only for html types)

Returns all the anchors that are part of thisHTML item. Thisis aread-only option, and may not be set.

[29] -i mage i maget oken
(Available only for htmlanchor, image types)

Specifies the image data associated with thisitem. Note that changing which image data an item uses

does not effect the image data. Specifically, if the -imageis set to the empty string, the image data it
previously specified is unaffected and still needs to be deallocated with the "i mage fr ee” command if

Page 66

itisno longer being used. (Also seethei nage command.)
[30]-info info
(Availablefor al item types)
A generic info field where the user may place any string. (See the find withinfo command).

[31]-ismap
(Available only for htmlanchor types)

Returnstrue if this anchor is an imagemap. Thisisaread-only option.

[32]-joinstyle join
(Available only for line, spline, oval, polygon, rectangle types)

Specifies how the joints at vertices are drawn. join may be one of:

* bevel : Thejoints are drawn without protruding. They are cut-off and sharp.
* i t er : Thejoints are drawn protruding to a point.

 r ound: Thejoints are rounded.

[33] -l ayer |ayer
(Availablefor all item types)

Specifiesthe layer theitemison. Every item sits on alayer (which is specified by a string), and each
view (top-level window and portals) specifies which layers are visible within that view. This gives
control over objects are visible where and can be used with portals to implement very simplefilters. (See
the -visiblelayers itemconfigure option of portals and the top-level window which is specified by the

surface (item 1). Defaultsto "main”.

[34] -1inesize val ue
(Available only for scrollbar types)

Specifies the amount a valuator widget should change to represent aline change. For a scrollbar, thisis
the amount changed when the trough is clicked. (Alsoseethe-from-t o and- pagesi ze

itemconfigure options.)

[35] -l ock | ock
(Availablefor all item types)

When an item islocked, it can not be deleted or modified (except for changing the lock status). Note
that attempting to modify or delete alocked item does not generate an error. It failssilently. Thisissoit
is easy to modify all items associated with atag and if certain items are locked they will just not get
modified. The restricted commands on locked items are; coor ds, del et e, i t enconfi gure,

scal e,slide,andt ext.

[36] -1 ookon surface
(Available only for portal types)

Specifies which Pad++ surface this portals |ooks onto. surface should be the complete pathName of a
Pad++ widget. Defaults to the surface the portal was created on.

Page 67

[37] - maxsi ze si ze
(Availablefor al item types)

Specifies the maximum size (in current units) thisitem should be rendered at. That is, if the view is such
that the largest dimension of this object is greater than size units, it will not be displayed. When an object
is not displayed becauseit istoo large, it does not receive events. When an object approaches its
maximum size it will fade out until it completely disappears when it reaches its maximum size. If sizeis-
1, then it has no maximum size and will never disappear because it istoo large. See the -faderange
itemconfigure option to control how quickly an item fades out.

size may also be specified as a percentage of the view it isvisible in (top-level window or portal). To
specify size as a percentage, it should be in the range from 0 to 100 and end with a"%". Example:

.pad ic 5 -ninsize 55%
size defaults to 10,000 pixels.

Also note that the rendering engine may decide to not display an item for reasons of efficiency if itis
reasonably small. See the -alwaysrender flag to avoid this.

[38] - nenbers nenbers
(Available only for frame, group, html, panel types)

membersisalist of object ids that specify the list of members of this group. Setting the members of a
group first removes all existing members, and then inserts the new members. The members are rendered
in the order they are specified in members.

[39] - nenber | abel s | abel s
(Available only for menu and choicemenu types)

Specifiesalist of labels that can be used when creating a menu or choicemnu instead of explicitly
creating amenuitem for each label. 1.e.:

.pad create nmenu -nenberl abels {"Content™ "Index" "Help"} \
-text "Hel p"

[40] - menubar menubar
(Available only for frame types)
Specifies the menubar associated with this frame (if any). By associating a menubar with aframe, the
menubar is resized so asto be positioned along the top of the frame in the traditional manner. When the
frame is resized, the associated menubar is also resized.

[41] - m nsi ze size
(Availablefor al item types)

Specifies the minimum size (in current units) thisitem should be rendered at. That is, if the view is such
that the largest dimension of this object isless than size units, it will not be displayed. When an object is
not displayed because it istoo small, it does not receive events. When an object approaches its minimum
sizeit will fade out until it completely disappears when it reachesits minimum size. See the -faderange
itemconfigure option to control how quickly an item fades out.

size may also be specified as a percentage of the view it isvisible in (top-level window or portal). To
specify size as a percentage, it should be in the range from 0 to 100 and end with a"%". Example:

Page 68

.pad ic 5 -ninsize 55%
size defaultsto O.
Also note that the rendering engine may decide to not display an item for reasons of efficiency if itis
reasonably small. See the -alwaysrender flag to avoid this.
[42] - noi sedat a noi sedat a

(Available only for line types)

Specifies the noise parameters used to make rough-looking lines. noi sedat a isafour element list of
numbers of the form:

"Pos Freq Amp Steps®

Rough lines are generated using the Perlin noise function. The Perlin noise function islike asin function
with avery irregular amplitude - like sin, noise has a constant period (one), but no two segments of the
noise curve are alike. Noisy lines are generated by adding noise to the tangent direction of aline.

In the current implementation, there are four noise parameters: Pos, Freg, Amp, and Steps. Pos
determines what part of the noise curve is sampled for that object. Freq determines the rate of sampling,
Amp indicates the level, and Steps indicates how many samples to introduce per line segment. The
drawing algorithm is straightforward. For each line segment, coordinates are generated as follows:

Dr awRoughLi ne(x1, y1, x2, y2, Pos, Freq, Amp, Steps)

step = 1.0/ Steps;

mag = length(x1,vyl, x2,y2);
theta = direction(xl,yl, x2,y2);
xmag = Anp * sin(theta) * mag;
ymag = Anp * cos(theta) * nag;

vertex(xl, yl);

for (a = step; a < steps; a += step) {
n = noi se(Pos);
vertex(lerp(a, x1,x2) + n*xanmp, lerp(a,yl,y2) + n*yanp);
Pos += Freq;

}
vertex(x2, y2);

Note that we multiply Amp by mag, the length of the line. Thisis necessary in Pad++ since the zooming
functionality means that lines can be of nearly any size. Making the level of noise proportional to the
length of the line keeps the informality uniform at all sizes. (We should probably also modulate the
number of points generated by the thickness of the line, so small thin lines are cheap).

Vauesof 0.3 for Freq, 0.1 for Amp, 10 for Steps produces pleasant-looking lines. Pos can be an arbitrary
floating point number - giving different objects unique values for Pos ensures that each object has a
different appearance.

[43]-orientation orientation
(Available only for scrollbar types)

Page 69

Specifies the orientation of arectangular widget. orientation can be"hori zont al " or "verti cal ".

[44] - pagesi ze val ue

(Available only for scrollbar types)

Specifies the amount a valuator widget should change to represent a page change. For a scrollbar, thisis
the amount changed when an arrow isclicked. (Alsoseethe-from-t o and- pagesi ze
itemconfigure options.)

[45] - pen col or

(Available for button, label, line, spline, oval, polygon, portal, rectangle, text, textfile, textfield types)

Color specifies acolor to use for drawing the line; it may have any of the forms acceptable to
Tk_GetColor. It may also be "none", in which case the line will not be drawn. This option defaults to
black.

[46] - penwi dt h wi dt h

(Available only for line, spline, oval, polygon, rectangle types)

Width specifies the width of the pen in current units to be drawn around the item. Wide lines will be
drawn centered on the path specified by the points. If width is 0.0, then the pen will always be drawn one
pixel wide, independent of the zoom. Width defaultsto 1 pixel.

[47] -position {x y scal e}

- pos isanaliasfor- position
(Availablefor al item types)

This specifies an items position and size through three variables (x, y, scale). (X, y) specifies the anchor
point of theitem. This meansthat the item will be positioned so that its anchor (north, center, southwest,
etc.) will appear at the specified anchor point. scale specifies the magnification of an item. (X, y, scale)
are al absolute quantities, independent of the current view and independent of any group membership.
Items that have coordinates (lines, rectangles, polygons, and portals) have adefault - posi t i on which
depends on the coordinates of theitem. For a"center" anchor (the default), the position will be the
center of the coordinates. Other items (that don’t have coordinates) have a default position of "0 0 1".
(Also seethe- anchor, - anchor pt, - r posi ti on, and - scal e itemconfigure options.)

The- posi ti on option may alternatively be given the special token "cent er " which means that the
item should positioned and scaled so that it biggest dimension fills up 75% of the window, and it is
centered. (Thisis dependent on the current view, and the current window dimensions.)

[48] -reference id

(Available only for alias types)

Specifiestheid of an item that an alias references.

[49] -relief relief

(Available only for button, portal types)

Specifiesthe relief to be used by the border of thisitem. relief may be any of: raised, sunken, flag, ridge,
or groove. Defaultsto "ridge"

[50] -renderscript Tcl Scri pt

(Availablefor al item types)

Page 70

Specifiesa Tcl script that will be evaluated every time the object is rendered. The script gets executed
when the object normally would have been rendered. By default, the object will not get rendered. The
script may call the renderitem function at any point to render the object. An exampleis:

.pad itenctonfigure 22 -renderscript {
puts "Before"
.pad renderitem
puts "After"

It would be possible to get in an endless render loop with the - r ender scri pt option. If a
-renderscri pt callback triggers arender which causes that item to be redrawn, the system will bein
an endless render loop. To avoid this problem, items do not implicitly trigger damage within a

-render scri pt calback. If you do want to explicitly damage an item withina- r ender scri pt
callback, you must use the damage command. Be very careful to avoid infinite render loops.

[51] -rposition {x y scal e}
-rpos isanadliasfor-rposition
(Availablefor al item types)

Thisissimilar to the - posi t i on itemconfigure option, but (x, y, scale) are relative to the current
group’ s position (whereas they are absolute for - posi ti on.) If setting thisoption on an item that is
not amember of agroup, then it behavesidentically to -position. If setting this option on an item that is
amember of agroup, then the item will actually appear at a position that is first specified by theitem’s
position, and then transformed by the group’s position. Note that this option can be difficult to use and
generaly is not recommend. (Also seethe - anchor , - anchor pt ,- posi ti on,and-scal e
itemconfigure options.)

[52] -scal e scale
(Availablefor all item types)

Thisisan aliasfor thefirst last (third) element of the -position itemconfigure option. scale specifies the
magnification of an item, and is an absolute quantity, independent of the current view and independent of
any group membership. (Also seethe - anchor , - anchor pt, - posi ti on,and-rposition
itemconfigure options.)

[53]-state state
(Available only for button, htmlanchor types)

Specifies the state of the anchor (which controlsits color). Thereisno direct control over an anchor’s
color. Rather, it usesthe default colors unless the HTML page specifies anchor colors. State may be one
of "unvisited", "active", "visited", or "notloaded". In-line images that haven’t been loaded yet are
"notloaded"”.

[54] -sticky style
(Availablefor all item types)

Specifiesif thisitem should be "sticky". Sticky items are constrained by the view so that whenever the
view changes, sticky items are moved in response. There are several different kinds of sticky
constraints. The simplest one (style =="1") makes the sticky item "stick" to the screen, independent of
the current view. That is, as the view pans and zooms, sticky items appear effectively stuck to the
screen. The different kinds of sticky constraints are described in detail below. Sticky items are rendered
in their normal stacking order, and thus sticky items can appear above or below non-sticky items. (See
the getview and moveto commands.) Defaultsto O (false).

Page 71

There are four kinds of sticky objects. They are:

* Regular sticky items (style=="1"). These don't move at al asthe view changes.

o "Sticky Z" items (style == 'z"). These do not zoom, but they pan normally. That is, they
when the view changes, their (X, y) position does not change, but their scale is recalculated so their
size does not change. This can be appropriate for handles or labels where you don't want their size
to change, but you do want them to stay with other related objects. Asaresult of this, the old
'handl€’ object type has now been deleted. The previous handles never worked quite right within
portals (they left screen junk), and their functionality is almost completely replaced by sticky z
objects. Note that one thing sticky z objects can not do that handles did do is that sticky z objects
don't scale only at the top-level view. Sincethey are otherwise regular objects, they can appear
scaled within portals.

Example: The following code creates a rectangle with 4 non-zooming "handles" on its corners.

set rect [.pad create rectangle 0 0 100 100 -fill white]

.pad create rectangle 0 0 6 6 -fill red -pos "0 0 1" -sticky z
.pad create rectangle 0 0 6 6 -fill red -pos "100 O 1" -sticky z
.pad create rectangle 0 0 6 6 -fill red -pos "0 100 1" -sticky z
.pad create rectangle 0 0 6 6 -fill red -pos "100 100 1" -sticky z

» "Sticky X" items (style=="x"). Thisislike sticky z, but the items also don't pan horizontally.
» "Sticky Y" objects (style=="y’). Thisislike sticky z, but theitems also don't pan vertically.

* "Sticky view" objects (style =="vi ew). Thisislike sticky z, but the items always stays within
the view - and the constrained position is remembered, so that the object does not "want" to stay
in its origina position as it does with the other sticky types. Instead, once it is moved to stay
within the view, the new position isits preferred position, and it sticks there.

[55] -tags tagLi st
(Availablefor al item types)

Specifies a set of tagsto apply to the item. TagList consists of alist of tag names, which replace any
existing tags for the item. TagList may be an empty list.

[56] -text string
(Available only for button, label, text, textfile, textfield types)

String specifies the characters to be displayed in the text item. Newline characters cause line breaks, and
tab characters are supported. This option defaults to an empty string.

[57]-tinerrate rate
(Availablefor all item types)

Specifies the frequency in milliseconds that the object's timerscript should be evaluated. If it isset to O,
the timer isturned off. Defaults to off (0). (see-ti merscri pt).

[58]-tinerscript Tcl Scri pt
(Availablefor all item types)

Specifiesa Tcl script that will be evaluated regularly, every rate milliseconds as specified by -timerrate

(if -timerrate is greater than zero). This evaluation isindependent of rendering and events. Returns the
current TclScript for the object. (see -timerrate).

Page 72

[59]-title title
(Available only for portal types)

If titleis specified, then the portal will be rendered with atitlebar consisting of title. Otherwise, no title
bar isdrawn. Defaultsto the empty string.

[60]-to val ue
(Available only for scrollbar types)

Specifies the ending (highest) value for a valuator widget to use. (Also seethe-from-1i nesi ze
and - pagesi ze itemconfigure options.)

[61] -transparency val ue
(Availablefor all item types)

Specifies the transparency an item is drawn with. value must be a value between 0.0 and 1.0 where 0.0 is
completely transparent and 1.0 is completely opaque. 1.0 isthe default. If aportal or group is partially
transparent, all of its member or visible objects, respectively, will have their transparency multiplied by
the portals or groups.

[62] - updat escri pt script
(Available only for html types)

If script is specified, it gets evaluated when the html source has loaded, and then once every time an in-
lineisloaded. script is postpended with the id of the html object. Thisis necessary because the script is
typically specified on the create line where the id of the html object is not yet known.

[63] -url wurlname
(Available only for html, htmlanchor types)

Specifiesthe URL (Universal Resource Locator, or World-Wide Web address) that this html page should
be accessed from. It must be specified with avalid address. Some examples are: "http://www.unm.edu”,
"http://www.cs.unm.edu/bederson”, "file://nfs/u3/bederson/public_html/begin.html”, "home-page.html™.

[64] - val ue val ue
(Available only for scrollbar types)

Specifies the value of valuator widget. For instance, this specifies the position of the thumb on a
scrollbar.

[65]-view {x y zoon}
(Available only for pad, portal types)

Specifies the location of thisview. For top-level views (i.e., Pad++ surfaces), this changes the whole
view. For portals, this changes the view within the portal. (X, y) specifesthe point at the center of the
view, and zoom specifies the magnification. For Pad++ surfaces, this defaultsto (0, O, 1). For portals,
this defaults to directly under the location the portal was created at. (Also seethe nbvet o command.)

[66] -vi ewscript Tcl Scri pt
(Availablefor al item types)

Specifiesa Tcl script that will be evaluated every time the view onto the Pad++ surface is changed. This
script gets executed after the view coordinates have changed, but before the new scene gets rendered.

Page 73

Returns the current viewscript.

[67]-visiblelayers |ayers
(Available only for pad, portal types)

Specifies what layers are visible within this portal. layers can be either alist of layers which will specify
which items will be displayed within this portal, or take the special form of "all -layerl -layer2 -layer3
.. inwhich case all layers except the ones specified will be displayed. Defaultsto "al". layers may also
take the special value "none" which meansthat no layers are visible. (See the -layer itemconfigure
option that all items have.)

[68]-width width
(Availablefor all item types)

By default, the width of every item is automatically computed based on its contents. If the- wi dt h
option is set, however, then this overrides the automatically computed value. Most items are squashed or
stretched to fit the specified width. Note that text and alias items, however, are clipped instead of being
squashed or stretched. (Also seethe - hei ght itemconfigure option.)

[69]-writeformat [copy | reference]
(Available only for image types)

This option controls whether objects that are created from disk-based data are saved by storing a copy of
all of the original data, or it referencesthe original file. If the fileiswritten astext, then the copy option
to writeformat makes copies of the original datafiles so that there are multiple files created. The binary
option results in writing the data in the outpuit file.

[70] - zoomaction {size growScript shrinkScript}
(Availablefor al item types)

Specifiesapair of Tcl scripts that gets evaluated when an item grows or shrinks such that its size crosses
the specified zoomaction size. Thisis asimple way of making "semantically zoomable" objects - that is,
objects that ook different when they are rendered at different sizes. When the item grows larger than
size, growscript is evaluated, and when it shrinks smaller than size, shrinkScript is evaluated.

Any number of pairs of scripts may be associated with different sizes. Each use of -zoomaction may
specify adifferent size, or modify scripts for an existing size. If both scripts are empty strings, then that
zoomaction is deleted. Thisreturns alist of zoomaction size, growScript, shrinkScript triplets.

Note that for a zoomaction to work, the item must get rendered on both sides of the size. It ispossibleto
create an object and then immediately change its size before it gets rendered. In this case, the
zoomaction will not get fired.

The script gets executed when the object normally would have been rendered. By default, the object will
not get rendered. The script may call ther ender i t emfunction at any point to render the object. See
the description of -renderscript for an example. The deletion of items during a zoomaction is delayed
until after the current render is finished.

Here is an example that turns a rectangle into an image when it is zoomed in, and back into the rectangle
when zoomed oult:

proc grow {} {
.pad ic rect -transparency O

. pad pushcoordframe rect

Page 74

set image_token [.pad image alloc inmages/unm.| ogo_orig. gif]
.pad create inage -inmage $i mage_token -anchor sw -tags "i mage"
. pad popcoordf rane

. pad renderitem

}

proc shrink {} {
.pad ic rect -transparency 1
set image_id [.pad find withtag imge]
if {$image_id !'=""} {
set image_token [.pad ic image -image]
.pad freeinage $i nage_t oken
. pad del ete inage

}

.pad renderitem

}

proc testzoomaction {} {
.pad create rectangle 0 0 341 222 -pen black -fill yellow3 \
-zoomaction {250 grow shrink} -tags "rect"

Alias Items

Items of type alias are items that mirror another existing item. They are separate items and have their own position,
tags, event bindings, etc., but use the rendering of another item. Aliases are created with widget commands of the
following form:

pat hName create alias [option value option value ...]

Aliases refer to the item specified by the -reference option . If the reference is not specified, or is deleted, then the
alias item is not rendered. Note that aliases are still somewhat buggy, and their behavior on groups of items is not
guaranteed. The following options are supported for aliases:

-reference [48] Whatitem an aliasreferences

Note that when the -width or -height of an alias set, the dlias is clipped to those dimensions rather than being
squashed or stretched as most items are.

Button Items

Button items are widgets that can be pressed and let go. If the pointer is over the button when the mouse button is
released, an associated script will be fired. Buttons are created with widget commands of the following form:

pat hNane create button [option value option value ...]

Buttons are one of severa widgets that are designed to mirror the functionality and usage of the standard widgetsin
Java's Abstract Windowing Toolkit (AWT). When buttons are created, they automatically get the tag "Button".
Buttons have default event handlers which define their behavior. These event handlers are defined on the tag
"Button” for the "Run" event mode. See the section on Default Bindings for more details about the event bindings.

The following options are supported for buttons:

-comand [14] Callback that is executed when button is pressed

Page 75

-fill [23] Specifiesfill color of button

-font [24] Specifies font to use for text

- pen [45] Specifies pen color of button

-relief [49] Specifies how border should be rendered (raised, flat, sunken, ridge, groove)
-state [53] State of the button (normal, active, or disabled)

-text [56] The text of the button

Canvas ltems

Canvas items are widgets that are rendered as a simple rectangle, and their only purpose is to be derived from.
From Tcl, this can be done with a -renderscript. There are no default event handlers. Canvases are created with
widget commands of the following form:

pat hName create canvas [option val ue option value ...]

Canvases are one of several widgets that are designed to mirror the functionality and usage of the standard widgets
in Java's Abstract Windowing Toolkit (AWT). When buttons are created, they automatically get the tag
"Canvas'. Canvases have no default event handlers which define their behavior.

The following options are supported for canvases:

-fill [23] Specifiesfill color of canvas

Checkbox Items

Checkbox items are widgets that can be pressed and let go. If the pointer is over the checkbox when the mouse
button is released, an associated script will be fired. Checkboxes maintain a binary state, and represent its state
visually with alittle box. Checkboxes are created with widget commands of the following form:

pat hNane create checkbox [option value option value ...]

Checkboxes are one of several widgets that are designed to mirror the functionality and usage of the standard
widgets in Java' s Abstract Windowing Toolkit (AWT). When checkboxes are created, they automatically get the
tag "Checkbox". Checkboxes have default event handlers which define their behavior. These event handlers are
defined on the tag "Checkbox" for the "Run" event mode. See the section on Default Bindings for more details
about the event bindings.

The following options are supported for checkboxes:

-comand [14] Callback that is executed when checkbox is pressed

-fill [23] Specifiesfill color of checkbox

-font [24] Specifies font to use for text

- pen [45] Specifies pen color of checkbox

-relief [49] Specifies how border should be rendered (raised, flat, sunken, ridge, groove)
-state [53] State of the checkbox (normal, active, or disabled)

-text [56] The text of the checkbox

Checkboxmenuitem Items

Checkboxmenutem items are widgets that are elements of pull-down or pop-up menus. When they are a member of
a menu, they can be activated by moving the mouse over them and letting go. They maintain a binary state that is
visualy represented on the itme. When a checkboxmenuitem is activated, an associated script will be fired.
Checkboxmenuitems are created with widget commands of the following form:

pat hNanme create checkboxnenuitem [option value option value ...]

Checkboxmenuitems are one of several widgets that are designed to mirror the functionality and usage of the

Page 76

standard widgets in Java's Abstract Windowing Toolkit (AWT). When checkboxmenuitems are created, they
automatically get the tag "CheckboxMenultem”. Checkboxmenuitems have default event handlers which define
their behavior. These event handlers are defined on the tag "CheckboxMenultem™ for the "Run" event mode. See
the section on Default Bindings for more details about the event bindings.

The following options are supported for checkboxmenuitems:

-comand [14] Callback that is executed when menuitem is pressed

-fill [23] Specifiesfill color of menuitem

-font [24] Specifies font to use for text

- pen [45] Specifies pen color of menuitem

-relief [49] Specifies how border should be rendered (raised, flat, sunken, ridge, groove)
-state [53] State of the menuitem normal, active, or disabled)

-text [56] The text of the menuitem

See the documention for Menu and Choicemenu items for some example code that uses checkboxmenuitems.

Choicemenu Items

Choicemenu items are widgets that implement a pop-up menu. They contain a list of menuitems or
checkboxmenuitems. When they are pressed, the member menuitems and checkboxmenuitems are displayed and
may be selected. They aways display the value of the currently selected menuitem or checkboxmenuitem.
Choicemenus are created with widget commands of the following form:

pat hNane create choi cenenu [option value option value ...]

Choicemenus are one of severa widgets that are designed to mirror the functionality and usage of the standard
widgets in Java' s Abstract Windowing Toolkit (AWT). When choicemenus are created, they automatically get the
tag "ChoiceMenu". Choicemenus have default event handlers which define their behavior. These event handlers
are defined on the tag "ChoiceMenu" for the "Run" event mode. See the section on Default Bindings for more
details about the event bindings.

The following options are supported for choicemenus:

-comand [14] Callback that is executed when choicemenu is pressed

-fill [23] Specifiesfill color of choicemenu

-font [24] Specifies font to use for text

-menbers [38] Thelist of members of a choicemenu

- pen [45] Specifies pen color of choicemenu

-relief [49] Specifies how border should be rendered (raised, flat, sunken, ridge, groove)
-state [53] State of the choicemenu (normal, active, or disabled)

-text [56] The text of the choicemenu

The following example shows how a pop-up menu can be created.

set cl [.pad create nenuitem-text "Tinmes"]

set c2 [.pad create nmenuitem-text "Helvetica"]

set c¢c3 [.pad create nmenuitem-text "Courier"]

. pad create choi cemenu -nenbers "$cl $c2 $c3" -text "Font"

Frame Iltems

Frame items are widgets that act like top-level windows within Pad++. They are used to group a collection of
items. They are similar to panels, except they window dressing that is used to manipulate the frame. Frames are
created with widget commands of the following form:

Page 77

pat hName create franme [[X; Y1 X, Yo] option value option value ...]

Frames are one of several widgets that are designed to mirror the functionality and usage of the standard widgetsin
Java’'s Abstract Windowing Toolkit (AWT). When frames are created, they automatically get the tag "Frame".
Frames have default event handlers which define their behavior. These event handlers are defined on the tag
"Frame" for the "Run" event mode. See the section on Default Bindings for more details about the event bindings.

Unlike group items, frames do not set their size based on their contents. Rather, they are fixed size as specified by
the command line coordinates, or by the - wi dt h [68] and - hei ght [26] itemconfigure options. Frames have
their own coordinate system where (0, 0) specifies the panels lower |eft corner. Adding items to a frame adds them
relative to the frame' s coordinate system.

The frame window dressing gives a pseudo-3D titlebar and border which can be used to move and resize the frame.

The following options are supported for frames:

-di vi si bl e [16] Trueif events go through the frame to its members
-fill [23] Specifiesfill color

-menbers [38] The list of members of the frame

-menubar [40] Menubar associated with aframe

Also, see the addgr oupnmenber [2] and r enovegr ouprrenber [72] commands that can be used to add and
remove items from the frame.

Grid Items

Items of type grid arrange one or more items in rows and columns and treats them as a group. It is based on the Tk
grid geometry manager and its behavior and Tcl syntax are very similar to it. In pad, al manipulations of a grid
once it is created are affected through the gr i d sub-command. Note that rows and columns start from the top left
corner of the grid (asin the Tk grid). The complete grid sub-command is described in this section.

Grids are created with widget commands of the following form:

pat hName create grid [slaves...]

Grid creation is sightly different from creation of other pad objects. Instead of the normal command-line option-
value pairs a list of daves and their grid configuration can be specified (see the section below on sub-commands
and slave configuration). Grids are special group objects and inherit much of the group functionality and support
the "-divisible" option which can be set (using itemconfigure) once the grid is created:

- di vi si bl e [16] Trueif events go through a group to its members

The syntax of the grid sub-command is:

pat hNane grid slave [slave...] option value [option value...]
pat hNane grid command arg [arg...]

If the first argument of the grid command is a slave object then the remainder of the command line is processed in
the same way as the grid configure command. The "-in" option can be used to add a dave to agrid. The following
grid sub-commands are allowed:

$PAD grid arrange master
Forces arrangement of the given grid. Any pending layout request for the grid isremoved. This can be

useful when an application has done several grid configuration and wants them to take effect
immediately. Normally, grid arrangement is done at "idle" times.

Page 78

$PAD grid bbox nmaster columm row

The bounding box (in pixels) is returned for the space occupied by the grid position indicated by column
and row. Thereturn value consists of 4 integers. Thefirst two are the pixel offset from the master
window (x then y) of the top-left corner of the grid cell, and the second two are the width and height of
the cell.

$PAD grid col ummconfigure master index [-option value...]

Query or set the column properties of the index column of the geometry master, master. The valid
options are -minsize and -weight. The -minsize option sets the minimum column size, in screen units,
and the -weight option (afloating point value) sets the relative weight for apportioning any extra spaces
among columns. If no valueis specified, the current value is returned.

$PAD grid configure slave [slave ...] [options]

The arguments consist of one or more slaves followed by pairs of arguments that specify how to manage
the slaves. The characters-, x and ”, can be specified instead of a window name to alter the default
location of aslave, as described inthe "RELATIVE PLACEMENT" section, below. If any of the slaves
are aready managed by the grid then any unspecified options for them retain their previous values rather
than receiving default values. The following options are supported:

-column n
Insert the slave so that it occupies the nth column in the grid. Column numbers start with 0. If
this option is not supplied, then the slave is arranged just to the right of previous slave
specified on thiscall to grid, or column 0" if it isthefirst dave. For each x that immediately
precedes the slave, the column position isincremented by one. Thus the x represents a blank
column for thisrow in the grid.

-columnspan n

Insert the slave so that it occupies n columnsin the grid. The default is one column, unless the
daveisfollowed by a-, in which case the columnspan is incremented once for each
immediately following -.

-in other
Insert the slave(s) in the grid object given by other (which must be an existing grid).

-padx amount
The amount specifies how much horizontal external padding to leave on each side of the
dave(s). The amount defaultsto 0.

-pady amount
The amount specifies how much vertical external padding to |eave on the top and bottom of

the slave(s). The amount defaultsto O.

-row n
Insert the slave so that it occupies the nth row in the grid. Row numbers start with 0. If this
option is not supplied, then the slave is arranged on the same row as the previous slave
specified on this call to grid, or the first unoccupied row if thisisthefirst slave.

-rowspan n
Insert the slave so that it occupies n rows in the grid. The default is onerow. If the next grid

Page 79

command contains” characters instead of slaves that line up with the columns of this slave,
then the rowspan of this slave is extended by one.

-sticky style
If aslave's parcel islarger than its requested dimensions, this option may be used to position
(or stretch) the slave within its cavity. Style isastring that contains zero or more of the
charactersn, s, e or w. The string can optionally contains spaces or commas, but they are
ignored. Each letter refersto a side (north, south, east, or west) that the slave will "stick” to.
If both n and s (or e and w) are specified, the slave will be stretched to fill the entire height (or
width) of its cavity. The sticky option subsumes the combination of -anchor and -fill that is
used by pack. The default is{}, which causes the slave to be centered in its cavity, at its
requested size.

$PAD grid forget slave [slave ...]
Removes each of the slaves from their grid.

$PAD grid info slave
Returns alist whose elements are the current configuration state of the slave given by slave in the same
option-vaue form that might be specified to grid configure. The first two elements of thelist are **-in
master” where master is the slave's master.

$PAD grid location master x vy

Given x and y valuesin screen units relative to the master object, the column and row number at that x
andy location is returned. For locations that are above or to the left of the grid, -1 is returned.

$PAD grid rowconfigure master index [-option value...]
Query or set the row properties of the index row of the geometry master, master. The valid options are -
minsize and -weight. Minsize sets the minimum row size, in screen units, and weight sets the relative
weight for apportioning any extra spaces among rows. If no valueis specified, the current valueis
returned.

$PAD grid size master

Returns the size of the grid (in columns then rows) for master. The size is determined either by the slave
occupying the largest row or column, or the largest column or row with a minsize or weight.

$PAD grid slaves master [-option val ue]

If no options are supplied, alist of all of the slaves in master are returned. Option can be either -row or -
column which causes only the slavesin the row (or column) specified by value to be returned.

Relative Placement

The grid command contains a limited set of capabilities that permit layouts to be created without specifying the row
and column information for each slave. This permits slaves to be rearranged, added, or removed without the need
to explicitly specify row and column information.

When no column or row information is specified for a slave, default values are chosen for column, row,
columnspan and rowspan at the time the dlave is managed. The values are chosen based upon the current layout of
the grid, the position of the dave relative to other slaves in the same grid command, and the presence of the
characters -, , and * in grid command where slave names are normally expected.

Page 80

- Thisincreases the columnspan of the slave to the left. Several -'sin arow will successively increase the
columnspan. S - may not follow a” or ax.

X Thisleaves an empty column between the slave on the left and the slave on the right.

" This extends the rowspan of the slave above the M'sin the grid. The number of M'sin arow must match the
number of columns spanned by the slave above it.

Restrictions on Master Windows
In pad, the master for each slave is the slave's parent (which isagrid object). This means if an object belongs to an
existing group then it cannot be added to agrid.

Differences Between Pad++ and TK Grid Commands

* The -ipadx and -ipady grid item configuration options are not available in pad.

» Master window geometry propagation flag is not available in pad.

» The parent-child and stacking restrictions and rules for master and slave items are not supported in pad
(slaves can only be in the master group).

o If the grid is not positioned then it places itself around its first item. Once &l grid items have been
positioned the grid bounding box will be computed to enclose them all.

» Added the ar r ange command for forcing grid arrangement.

* [temsthat are removed from grids are not unmapped.

Examples
1) put four objectsin a2x2 grid with 10 pixels horizontal and vertical pading:

set obj1 [.pad create rectangle 0 0 50 50]

set obj2 [.pad create rectangle 50 50 100 100]

set obj3 [.pad create rectangle 100 100 150 150]

set obj4 [.pad create rectangl e 150 150 200 200]

set thegrid [.pad create grid $obj1 $obj2 -padx 10 -pady 10]
.pad grid $obj3 $obj4 -in $thegrid -row 1 -padx 10 -pady 10

2) read objects from pad filesin adirectory and place them in a Nx2 grid (this can be useful for creating pal ettes):

proc read _files {PAD dir} {
set objs ""
Go though list of files
foreach file [glob $dir/*.pad] {
Read file and put all its object in a group (Pad_ObjectList will be
set to list of objects read fromfile).
$PAD read $file
set group [$PAD create group -nenbers $Pad_Obj ect Li st]
| append obj s $group
}

return $objs

Page 81

proc create_pal ette {PAD objs} {
Create the grid object
set thegrid [$PAD create grid]
set row O
set col O

Go through objects and place themtwo per row
foreach obj $objs {
Add obj to the grid
$PAD grid $obj -in $thegrid -row $row -col umm $col -padx 10 -pady 5

Set row and colum position for next object
if {$col == 0} {
incr col
} else {
set col O
incr row

Have the grid arrange itself now
$PAD grid arrange $thegrid

return $thegrid
}

create_palette .pad [read_files .pad $env(PADHOVE)/ draw scr apbook]

Alternatively,

proc create_pal ette {PAD objs} {
create the grid object
set thegrid [$PAD create grid]

go through list of objects and place themtwo per row
set nunobjs [l ength $obj s]
for {set i 0} {$i < $numpbjs} {incr i 2} {
set obj1 [lindex $objs $i]
if {$i < [expr $nunpbjs-1]} {
set obj2 [lindex $objs [expr $i+1]]
} else {
set obj2 ""
}

$PAD grid $obj1l $obj2 -in $thegrid -padx 10 -pady 5
}

$PAD grid arrange $thegrid
return $thegrid
}

create_palette .pad [read_files .pad $env(PADHOVE)/ dr aw scr apbook]

3) Draw horizontal and vertical grid lines and a bounding rectangle for an existing grid. Make a group for the line
objects and the existing grid. Assume the grid is a norma MxN table (i.e. all rows have N columns and all columns
have M rows).

proc create_gridlines { PAD thegrid } {
Get bounding box, w dth and height and | ocation of the grid
set gbbox [$PAD bbox $t hegri d]

Page 82

set gwidth [expr [lindex $gbbox 2] - [lindex $gbbox 0]]
set gheight [expr [lindex $gbbox 3] - [lindex $gbbox 1]]
set gx [lindex $gbbox 0]
set gy [lindex $gbbox 1]

Get nunber of rows and col ums
set nunrows [lindex [$PAD grid size $thegrid] 1]
set nunctols [lindex [$PAD grid size $thegrid] 0]

Create the bounding rectangle
set grect [eval $PAD create rectangl e $gbbox]

set items "$grect”
set scal e [$PAD scal e $thegri d]

Create horizontal lines by looking at the <r, 0> grid el enments.
for {set r 1} {$r < $nunrows} {incr r} {
Get location of the <r, 0> element (including padding)
set rinfo [$PAD grid bbox $thegrid 0 $r]
set x1 [expr [lindex $rinfo O] *$scale + $gx]
Transformthe y coord for pad (grid's is fromtop left corner)
set yl1 [expr ($gheight - [lindex $rinfo 1] *$scale) + $gy]
set x2 [expr $x1 + $gwi dt h]
set y2 $yl
| append itens [$PAD create |ine $x1 $yl $x2 $y2 -tags gridrow i ne_$thegrid]

Draw vertical lines by |ooking at the <0, c> el enents
for {set c 1} {$c < $nuntols} {incr c} {
set cinfo [$PAD grid bbox $thegrid $c 0]
set x1 [expr [lindex $cinfo O] *$scale + $gx]
set yl1 [expr ($gheight - [lindex $cinfo 1] *$scale) + $gy]
set x2 $x1
set y2 [expr $yl - $ghei ght]
| append items [$PAD create line $x1 $yl $x2 $y2 -tags gridcol line_$thegrid]

Create a group for all the grid lines
set glines [$PAD create group -menbers $itens -divisible 0\
-tags gridlines_%$thegrid]

Create a group for the lines and the grid
set newgrp [$PAD create group -nenbers "$glines $thegrid" -tags grid_S$thegrid \
-divisible 1]

return $newgrp
}

set thegrid [create_palette .pad [read _files .pad ./draw scrapbook]]
create_gridlines .pad $thegrid

Group Items

Items of type group are specia items that group other items. Group items do not have any visual appearance, but
rather are used just for creating structure. Groups are implemented very efficiently, and may be hierarchical (i.e.,
contain other groups). Modifying the position of a group implicitly affects all of the members of the group,
recursively. Pad++ also supports "tags' which are implicit way of grouping items - but this only works for events.

Page 83

That is, giving several items the same tag alows them all to respond to the same event handlers. Groups explicitly
bring items together. Group members are rendered sequentially in the display list. That is, no other objects can
appear inbetween group members - they are always above or below all the group members. Raising or lowering a
group object raises or lowers al the group members. Raising or lowering a group member raises or lowers the
member within the group.

Groups automatically resize themselves to contain all of their members - thus adding, removing, or repositioning a
member implicitly changes the size of the group. See the pad addgr oupnenber and r enovegr oupremnber

commands and the -member itemconfigure option below for setting group membership, and the get gr oup
command for testing group membership.

When an event hits a group, it normally passes through the group object to its members. However, it is possible to
configure a group object so that it grabs the events and does not pass them through. See the -divisible flag.

Groups are created with widget commands of the following form:

pat hName create group [option value option value ...]

There may be any number of option-value pairs, each of which sets one of the configuration options for the item.
These same option-value pairs may be used in itemconfigure widget commands to change the item's configuration.
The following options are supported for groups:

-di vi si bl e [16] Trueif events go through a group to its members
-menbers [38] Thelist of members of agroup
HTML Items

Items of type html are compound items representing the specified html file. (HTML is HyperText Markup
Language. Based on SGML, HTML is most commonly known as the language describing items for the World-Wide
Web.) HTML items know about the internet and will automatically fetch a file from a URL (Universal Resource
Locator) as well as in-line images. URL’s may also specify local files. When the html data is fetched, it is parsed
and the HTML item is created which contains a method for rendering the page. HTML anchors are created as
separate items which may have events bound to them. HTML items are an extension of gr oup items, and thus
have several of the same options as groups.

There is a Tcl file (draw/html.tcl) which describes default event bindings for html items which follow hyperlinks,
and lay them out with scale. See the end of the description of HTML items for a description of html anchors.

HTML items are created with widget commands of the following form:

pat hName create html [option value option value ...]

There may be any number of option-value pairs, each of which sets one of the configuration options for the item.
These same option-value pairs may be used in itemconfigure widget commands to change the item's configuration.
The following options are supported for html items:

-border [10] Specifies border color of item
-borderw dth [11] Specifieswidth of border
- di vi si bl e [16] Trueif events go through a group to its members

-donescript [17] A scripttoevaluate when abackground action has completed
-errorscript [19] A scripttoevaluate when abackground action has an error

-fill [23] Specifiesfill color of item

-font [24] Specifies font to use for text

-ht m anchors [28] The anchors associated with an HTML page

-menbers [38] Thelist of members of agroup

-updat escri pt [62] A script to evaluate when a background action has made progress
-url [63] The URL associated with an item

Page 84

Not e t hat when thewidth of an html page is changed, the page isre-laid out, and the height of the page could
change as aresult.

HTML Anchors

The anchors are special Pad++ items of type "htmlanchor". They are automatically grouped with the HTML
object. As such, they can not be deleted independently, and are automatically deleted when the html object they are
associated with is deleted. Some anchors have multiple components (i.e., and image and some text). In this case,
they all have the same URL, and changing the pen color of one component automatically changes the pen color of
the other components.

Anchors may be configured with the itemconfigure command. The following options are supported for html
anchors:

-htm [27] The HTML item associated with an htmlanchor
-image [29] Image data associated with item
-ismap [31] Trueif an htmlanchor is an image map
-state [53] State of an item (such asvisited, unvisited, etc.)
-url [63] The URL associated with an item

Image Items

Items of type image appear on the display as color images. Images are created with widget commands of the
following form:

pat hName create image [option value option value ...]

There may be any number of option-value pairs, each of which sets one of the configuration options for the item.
These same option-value pairs may be used in itemconfigure widget commands to change the item's configuration.
The following options are supported for images:

-di ther [15] Render with dithering
-image [29] Image data associated with item (allocated by image alloc)

-writeformt [69] Controlswhether disk-based item iswritten out by copy or reference

KPL Items

Items of type Kpl provide a method for creating an item with a user-described render method. Sometimes the
Pad++ items available do not have exactly what you want, or you'd like a complex item consisting of several
primitives. Rather than create several different Pad++ items and group them together, a single Kpl item can be
created with akind of display list.

Kpl isalanguage (designed at New Y ork University by Ken Perlin, et. al.) that is very simple, but extremely fast. It
is the best language we found for writing interpreted code for rendering quickly. In fact, Kpl has a byte-compiler
which makes it faster. Some simple experiments have shown it to be roughly 15 times slower than C for simple
math (compared to tcl which is typically about 1,000 times slower than C). Because Kpl is a general-purpose
language, it can be used for on-the-fly calculations as well as render calls. Pad++ supplies several render that
available through Kpl that allow a Kpl object to render fairly complex objects.

Kpl is a stack-based post-fix language (much like PostScript). Some basic documentation is available with the
Pad++ release in doc/kpl.troff. See the section in this document on the KPL-PAD++ INTERFACE for a description
of how to access Kpl through Pad++, and what Pad++ routines are available from Kpl.

Kpl items are created with widget commands of the following form:

pat hName create kpl [option value option value ...]

Page 85

There may be any number of option-value pairs, each of which sets one of the configuration options for the item.
These same option-value pairs may be used in itemconfigure widget commands to change the item's configuration.
The following special options are supported for kpl objects:

-bb [9] A KPL script that gets evaluated to specify the bounding box of anitem

Note that al coordinatesin Kpl are specified in pixels, and not in the current Pad++ units. An example follows that
creates aKpl item that draws a brown triangle. In this case, the Kpl codeis stored in thefile triangle.kpl.

Tcl code to | oad Kpl code and to create
Pad++ Kpl itemthat draws a brown triangle
kpl eval 'triangle.kpl source
set pen [.pad alloccol or brown]
.pad create kpl -bb {-10:-10 110:110} -renderscript {draw_ triangl e}

/* Kpl code (in a separate file)
to draw a brown triangle */
{
"pen tcl _get -> Pen
Pen setcol or
3 setlinew dth

newpat h
0: 0 noveto
100: 0 lineto
50: 100 lineto
0:0 lineto
stroke

} -> draw triangle

Label Items

Label items are widgets that simply display some text with a background color. They have no behavior. Labels are
created with widget commands of the following form:

pat hNane create | abel [option value option value ...]

Labels are one of several widgets that are designed to mirror the functionality and usage of the standard widgets in
Java' s Abstract Windowing Toolkit (AWT). When labels are created, they automatically get the tag "L abel".

The following options are supported for |abels:

-fill [23] Specifiesfill color of label
-font [24] Specifies font to use for text
- pen [45] Specifies pen color of label
-text [56] The text of the label

Line Items

Items of type line appear on the display as one or more connected line segments. Lines are created with widget
commands of the following form:

pat hName create line [X; y1... X, Y, [Option value option value ...]]

The arguments x4 through y,, give the coordinates for a series of two or more points that describe a series of

Page 86

connected line segments. After the coordinates there may be any number of option-value pairs, each of which sets
one of the configuration options for the item. These same option-value pairs may be used in itemconfigure widget
commands to change the item's configuration. If a line is created without any points, it will not be rendered until
some points are added with the coor ds command. The following options are supported for lines:

-arrow [7] Whether to draw arrow heads with thisitem
-arrowshape [8] Theshapeof drawn arrow heads
-capstyle [12] Specifies how to draw line ends
-joinstyle [32] Specifieshow to draw the joints within multi-point lines
- noi sedat a [42] Specifies parameters to render item with noise
- pen [45] Specifies pen color of item
- penwi dt h [46] Specifies width of pen
Menu Items

Menu items are widgets that are elements of menubar and are used to implement a pull-down menu. They contain a
list of menuitems or checkboxmenuitems. When they are pressed, the member menuitems and checkboxmenuitems
are displayed and may be selected. Menus are created with widget commands of the following form:

pat hName create nmenu [option value option value ...]

Menus are one of several widgets that are designed to mirror the functionality and usage of the standard widgets in
Java's Abstract Windowing Toolkit (AWT). When menus are created, they automatically get the tag "Menu".
Menus have default event handlers which define their behavior. These event handlers are defined on the tag
"Menus' for the "Run" event mode. See the section on Default Bindings for more details about the event bindings.

The following options are supported for menus:

-fill [23] Specifiesfill color of menu

-font [24] Specifies font to use for text

-menbers [38] Thelist of members of amenu

- pen [45] Specifies pen color of menu

-relief [49] Specifies how border should be rendered (raised, flat, sunken, ridge, groove)
-state [53] State of the menu (normal, active, or disabled)

-text [56] The text of the menu

The following example shows how several pull-down menus can be created that consist of menuitems and
checkboxmenuitems. The menus that are created are then put in a menubar.

set f1 [.pad create nmenuitem-text "New. .."]
set f2 [.pad create nmenuitem -text "Open..."]
set f3 [.pad create nmenuitem -text "Save"]
set f4 [.pad create nmenuitem -text "Save As"]
set f5 [.pad create nmenuitem-text "Exit"]

set el [.pad create checkboxmenuitem -text "Cut"]
set e2 [.pad create nmenuitem -text "Copy"]
set e3 [.pad create nmenuitem -text "Paste"]

set gl [.pad create nmenuitem -text "Content"]
set g2 [.pad create nmenuitem -text "Index"]
set g3 [.pad create nmenuitem -text "About"]

set ml [.pad create nmenu -nenbers "$f1 $f2 $f3 $f4 $f5" -text "File"]

set n2 [.pad create nenu -menbers "$el $e2 $e3" -text "Edit"]
set nB [.pad create nenu -menbers "$gl $g2 $g3" -text "Hel p"]

Page 87

.pad create menubar -menbers "$ml $nm2 $nmB8" - hei ght 30

Menubar Items

Menubar items are widgets that define a pull-down menu. They contain a list of menus. When the consituent
menus are pressed, their member menuitems and checkboxmenuitems are displayed and may be selected. Menubars
are created with widget commands of the following form:

pat hName create menubar [option value option value ...]

Menubars are one of several widgets that are designed to mirror the functionality and usage of the standard widgets
in Java's Abstract Windowing Toolkit (AWT). When menubars are created, they automatically get the tag
"MenuBar". Menubars have no default event handlers which define their behavior.

The following options are supported for menubars:

-fill [23] Specifiesfill color of menu
-menbers [38] Thelist of members of amenu

See the documention for Menu items for some example code that uses menubars.

Menuitem Items

Menutem items are widgets that are elements of pull-down or pop-up menus. When they are a member of a menu,
they can be activated by moving the mouse over them and letting go. When a menuitem is activated, an associated
script will be fired. Menuitems are created with widget commands of the following form:

pat hNane create nmenuitem [option value option value ...]

Menuitems are one of several widgets that are designed to mirror the functionality and usage of the standard
widgets in Java's Abstract Windowing Toolkit (AWT). When menuitems are created, they automatically get the
tag "Menultem". Menuitems have default event handlers which define their behavior. These event handlers are
defined on the tag "Menultem" for the "Run" event mode. See the section on Default Bindings for more details
about the event bindings.

The following options are supported for menuitems:

-comand [14] Callback that is executed when menuitem is pressed

-fill [23] Specifiesfill color of menuitem

-font [24] Specifies font to use for text

- pen [45] Specifies pen color of menuitem

-relief [49] Specifies how border should be rendered (raised, flat, sunken, ridge, groove)
-state [53] State of the menuitem normal, active, or disabled)

-text [56] The text of the menuitem

See the documention for Menu and Choicemenu items for some example code that uses menuitems.

Oval Iltems

Items of type oval appear as ovals on the display. Each oval may have an outline (pen color), afill, or both. Ovals
are created with widget commands of the following form:

pat hName create oval [Xx; y; X Yy, [option value option value ...]]

The arguments x4, Y1, Xo, and y, give the coordinates of two diagonally opposite corners of the oval. If an oval is

Page 88

created without any points, it will not be rendered until some points are added with the coor ds command. After
the coordinates there may be any number of option-value pairs, each of which sets one of the configuration options
for the item. These same option-value pairs may be used in itemconfigure widget commands to change the item's
configuration. The following options are supported for ovals:

-fill [23] Specifiesfill color of item
-joinstyle [32] Specifieshow to draw the joints within multi-point lines
- pen [45] Specifies pen color of item
- penwi dt h [46] Specifies width of pen
Pad Items

Each pad widget implicitly defines a special "pad" item which always has the id "1". Thisis a specia item which
can get events and has a few itemconfigure options. It may not be explicitly created or deleted. The valid options
are:

-vi ew [65] Specifies the view thisitem sees
-vi si bl el ayers [67] Thelayersthat are visible within this view (just for portals and surface, item #1)

Panel Items
Panel items are widgets that are used to group a collection of items. They are similar to groups, except they have a
background color, and they are fixed size. Panels are created with widget commands of the following form:

pat hName create panel [[X; Y1 X, Yo] option value option value ...]

Panels are one of several widgets that are designed to mirror the functionality and usage of the standard widgets in
Java s Abstract Windowing Toolkit (AWT). When panels are created, they automatically get the tag "Panel”.

Unlike group items, panels do not set their size based on their contents. Rather, they are fixed size as specified by
the command line coordinates, or by the - wi dt h [68] and - hei ght [26] itemconfigure options. Panels have
their own coordinate system where (0, 0) specifies the panels lower left corner. Adding items to a panel adds them
relative to the panel’ s coordinate system.

The following options are supported for panels:

-di vi si bl e [16] Trueif events go through the pandl to its members
-fill [23] Specifiesfill color
-menbers [38] The list of members of the panel

Also, see the addgr oupnenber [2] and r enovegr ouprrenber [72] commands that can be used to add and
remove items from the panel.

Polygon Items

Items of type polygon appear as polygonal regions on the display. Each polygon may have an outline (pen color), a
fill, or both. Polygon are created with widget commands of the following form:

pat hName create polygon [X; Yi... X, Yn [Option value option value ...]]

The arguments X4, Y1, ..., Xp, and y,, specify the coordinates of the vertices of the polygon. If a polygon is created
without any points, it will not be rendered until some points are added with the coor ds command. After the
coordinates there may be any number of option-value pairs, each of which sets one of the configuration options for
the item. These same option-value pairs may be used in itemconfigure widget commands to change the item's
configuration. The following options are supported for polygons:

Page 89

-fill [23] Specifiesfill color of item
-joinstyle [32] Specifieshow to draw the joints within multi-point lines

- pen [45] Specifies pen color of item
- penwi dt h [46] Specifies width of pen
Portal Items

Portals are a specia type of item in Pad++ that sit on the Pad++ surface with a view onto a different location.
Because each portal has its own view, a surface might be visible at severa locations, each at a different
magnification, through various portals. In addition, portals can look onto surfaces of other Pad++ widgets. The
surface that the portal is looking onto is called that portal's lookon. Portal items are created with widget commands
of the following form:

pat hName create portal [X; Y1 Xp Yo ... [option value option value ...]]

If two points are specified, then the portal will be rectangular where those two points specify the lower left and
upper right coordinates of the portal. If more than two points are specified, then the portal will be polygonal shaped
by those points. If a portal is created without any points, it will not be rendered until some points are added with the
coor ds command. There may be any number of option-value pairs, each of which sets one of the configuration
options for the item. These same option-value pairs may be used in itemconfigure widget commands to change the
item's configuration. The following options are supported for text items:

-border [10] Specifies border color of item

-borderw dth [11] Specifieswidth of border

-fill [23] Specifiesfill color of item

-font [24] Specifies font to use for text

-1 ookon [36] Specifies the pad widget thisitem sees

- pen [45] Specifies pen color of item

-relief [49] Specifies how border should be rendered (raised, flat, sunken, ridge, groove)
-title [59] Some items only: Title of anitem

-vi ew [65] Specifies the view thisitem sees

-vi si bl el ayers [67] Thelayersthat are visible within this view (just for portals and surface, item #1)

Note that it isimpossible to directly change an item’s parameters when it is viewed within aportal. That is, you can
not have an object that has a -minsize of 20% in the top-level view, but a- mi nsi ze of 0% within a portal. One
(inelegant) workaround to this is to use an alias. You could fmake an dias of the original object and put it in a
different place. Put what ever min/maxsize you want on the alias, and have the portal ook onto the alias.

Rectangle Items

Items of type rectangle appear as rectangular regions on the display. Each rectangle may have an outline (pen
color), afill, or both. Rectangles are created with widget commands of the following form:

pat hName create rectangle [x; y; X5 yo [option value option value ...]]

The arguments X, Y1, X5, and y, give the coordinates of two diagonally opposite corners of the rectangle If a
rectangle is created without any points, it will not be rendered until some points are added with the coor ds
command. After the coordinates there may be any number of option-value pairs, each of which sets one of the
configuration options for the item. These same option-value pairs may be used in itemconfigure widget commands
to change the item's configuration. The following options are supported for rectangles:

-fill [23] Specifiesfill color of item
-joinstyle [32] Specifieshow to draw the joints within multi-point lines
- pen [45] Specifies pen color of item

Page 90

- penwi dt h [46] Specifies width of pen

Scrollbar Items

Scrollbar items are widgets that are used to interactively select a numeric value within a range. Whenever the value
is changed, an associated script will be fired. Scrollbars are created with widget commands of the following form:

pat hName create scrollbar [option value option value ...]

Scrollbars are one of several widgets that are designed to mirror the functionality and usage of the standard widgets
in Java's Abstract Windowing Toolkit (AWT). When scrollbars are created, they automatically get the tag
"Scrollbar”. Scrollbars have default event handlers which define their behavior. These event handlers are defined
on the tag "Scrollbar" for the "Run” event mode. See the section on Default Bindings for more details about the
event bindings.

The following options are supported for scrollbars:

-comand [14] Callback that is executed when scrollbar value is changed
-fill [23] Specifiesfill color of scrollbar

-from|[25] Smallest value that scrollbar takes

-linesize [34] Amount scrollbar should change to represent aline change
-orientation [43] Orientation of scrollbar (horizontal or vertical.)

- pagesi ze [44] Amount scrollbar should change to represent a page change
-to [60] Largest value that scrollbar takes

-val ue [64] Current value of scrollbar

Spline Items

Items of type spline appear on the display as one or more bezier curves joined end to end, so the last point of the
one curve is used as the first point of the next. Splines are displayed as smooth curves at any magnification. They
are rendered in more detail when they are larger. It is possible to create a fixed approximation to a spline with the
spl i ne2l i ne command. In addition, it is possible to generate a spline that approximates a multi-segmented line
with the | i ne2spl i ne command. A bezier curve is defined using four points - the start and end point for the
curve, and two control points that indicate the path that the curve follows. For example:

c | Control
pgi?]ttrg point 2
[
o
Start
point End

point

For a spline made from a single bezier segment, the points are given as follows:

<start-x> <start-y> <c1l-x> <cl-y> <c2-x> <c2-y> <end-x> <end-y>

Page 91

That is, first the start point is given, followed by the first control point, followed by the second control point and
finishing with the end point for the curve. For example, you can create a simple spline using:

.pad create spline00 10102010300

here (0, 0) defines the start of the curve. (10, 10) is the first control point, (20, 10) is the second control point, and
the curve ends at (30, 0).

Splines are created with widget commands of the following form:

pat hName create spline x4 yq... X, Y, [Option value option value ...]

The arguments x; through y,, give the coordinates for a series of one or more splines. Each point is specified by two
coordinates. When specifying a spline made from two or more bezier curves, the end point of the first curve is used
as the start point for the second, so the second curve only requires an additional three points (two control points and
an end point). In genera a spline of N bezier curves requires 3N+1 points (6N+2 coordinates). This represents a
start point and then three points for each curve.

For convenience, if the end point of the last curve segment in a spline is omitted, Pad++ assumes that the curve
should be 'closed' - it uses the start point of the first curve as the end point for the last curve, creating a closed
shape. For closed shapes, therefore, you should provide 3N points (6N coordinates).

After the coordinates there may be any number of option-value pairs, each of which sets one of the configuration
options for the item. These same option-value pairs may be used in itemconfigure widget commands to change the
item's configuration. The following options are supported for lines:

-arrow [7] Whether to draw arrow heads with this item
-arrowshape [8] Theshape of drawn arrow heads
-capstyle [12] Specifies how to draw line ends
-joinstyle [32] Specifieshow to draw the joints within multi-point lines
- pen [45] Specifies pen color of item
- penwi dt h [46] Specifies width of pen

TCL Items

Items of type tcl are really a simple of way of having user-describable item. A Tcl item really consists of two Tcl
scripts to render an item procedurally (one to render, and the other to compute the bounding box.) The render script
can render by calling the pad widget with the various drawing routines (see dr awl i ne, dr awt ext , set col or,
set | i new dt h.) Tcl'sare created with widget commands of the following form:

pat hNanme create tcl [option value option value ...]

There may be any number of option-value pairs, each of which sets one of the configuration options for the item.
These same option-value pairs may be used in itemconfigure widget commands to change the item's configuration.
The following options are supported for tcl objects:

-bb [9] A script that gets evaluated to specify the bounding box of an item

Text Items

A text item displays a string of characters on the screen in one or more lines. There is a single custom "vector" font.
Text items are created at a default size of one pixel high. Their size can be changed with the scal e command or
the -position itemconfigure option.

INDICES

Many of the commands for text take one or more indices as arguments. An index is a string used to indicate a

Page 92

particular place within a text, such as a place to insert characters or one endpoint of a range of characters to delete.
Indices have the syntax:

base nodifier nodifier nodifier

Where base gives a starting point and the modifiers adjust the index from the starting point (e.g. move
forward or backward one character). Every index must contain a base, but the modifiers are optional.

The base for an index must have one of the following forms:

| i ne. char

Indicates char'th character on lineline. Lines are numbered from 0. Notice that thisis
different than the Tk text widget. Within aline, characters are numbered from O.

i ne. end

Indicates the last character on line line. Lines are numbered from O.

char
Indicates the char'th character from the beginning of the file (starting at 0).
@,y
Indicates the character that covers the pixel whose x and y coordinates within the text's
window are x and y.
end
Indicates the last character in the text.
mar k

Indicates the character just after the mark whose name is mark.
If modifiers follow the base index, each one of them must have one of the forms listed below. Keywords
such as chars and wordend may be abbreviated as long as the abbreviation is unambiguous. Modifiers
must have one of the following forms:

+ count chars

Adjust the index forward by count characters, moving to later linesin the text if necessary. If
there are fewer than count charactersin the text after the current index, then set the index to
the last character in the text. Spaces on either side of count are optional.

- count chars
Adjust the index backward by count characters, moving to earlier linesin the text if necessary.

If there are fewer than count charactersin the text before the current index, then set the index
to the first character in the text. Spaces on either side of count are optional .

+ count |ines

Page 93

Adjust the index forward by count lines, retaining the same character position within the line.
If there are fewer than count lines after the line containing the current index, then set the index
to refer to the same character position on the last line of the text. Then, if the lineis not long
enough to contain a character at the indicated character position, adjust the character position
to refer to the last character of the line. Spaces on either side of count are optional.

- count |ines

Adjust the index backward by count lines, retaining the same character position within the
line. If there are fewer than count lines before the line containing the current index, then set
the index to refer to the same character position on the first line of the text. Then, if thelineis
not long enough to contain a character at the indicated character position, adjust the character
position to refer to the last character of the line. Spaces on either side of count are optional.

linestart

Adjust the index to refer to the first character on the line.
i neend

Adjust the index to refer to the last character on the line.
wor dst art

Adjust the index to refer to the first character of the word containing the current index. A
word consists of any number of adjacent characters that are letters, digits, or underscores, or a
single character that is not one of these.

wor dend

Adjust the index to refer to the character just after the last one of the word containing the
current index. If the current index refersto the last character of the text then it is not modified.

If more than one modifier is present then they are applied in left-to-right order. For example, the index
"end - 1 chars" referstothe next-to-last character inthetextand "i nsert wordstart - 1
c" refersto the character just before the first one in the word containing the insertion cursor.

MARKS

The second form of annotation in text widgetsis amark. Marks are used for remembering particular placesin atext.
They have names and they refer to placesin the file, but a mark isn't associated with particular characters. Instead, a
mark is associated with the gap between two characters. Only a single position may be associated with a mark at
any given time. If the characters around a mark are deleted the mark will still remain; it will just have new neighbor
characters. In contrast, if the characters containing a tag are deleted then the tag will no longer have an association
with characters in the file. Marks may be manipulated with the mar k sub-command, and their current locations
may be determined by using the mark name as an index in widget commands.

One mark has special significance. The mark insert is associated with the insertion cursor. The mark point is an
synonym for insert. This special mark may not be unset.

USAGE

Text items are supported by the Pad++ text command. Text items are created with widget commands of the
following form:

Page 94

pat hName create text [option value option value ...]

There may be any number of option-value pairs, each of which sets one of the configuration options for the item.
These same option-value pairs may be used in itemconfigure widget commands to change the item's configuration.
The following options are supported for text items:

-editable [18] Trueif text item is editable with default event handlers (default is false)

-font [24] Specifies font to use for text
- pen [45] Specifies pen color of item
-text [56] The text of any item containing text

Note that when the -width or -height of a text item is set, the text item is clipped to those dimensions rather than
being sguashed or stretched as most items are.

Also, seethet ext [91] command that can be used to manipulate text items.

Text items have default event bindings which can be used for emacs-style editing of them. See the section on
Default Bindings for moreinfo.

Textfile Items

A textfile item displays a string of characters on the screen in one or more lines as with text items, but the text is
loaded in from a file. Textfile items are supported by the Pad++ text command. Textfile items are created with
widget commands of the following form:

pat hNane create textfile [option value option value ...]

There may be any number of option-value pairs, each of which sets one of the configuration options for the item.
These same option-value pairs may be used in itemconfigure widget commands to change the item's configuration.
The following options are supported for text items:

-file [22] File an item should be defined by

-font [24] Specifies font to use for text

- pen [45] Specifies pen color of item

-text [56] (Read-only) Thetext of any item containing text

-witeformt [69] Controlswhether disk-based item iswritten out by copy or reference

Note that when the -width or -height of a textfile item is set, the textfile item is clipped to those dimensions rather
than being squashed or stretched as most items are.

Also, seethet ext [91] command that can be used to manipulate text items.

Text items have default event bindings which can be used for emacs-style editing of them. See the section on
Default Bindings for more info.

Textarea ltems

Textarea items are widgets that are used to enter afree form multi-line block of text. They can be edited with emacs-
style keys, and copied from and paste to with the mouse. They have horizontal and vertical scrollbars that can be
used to edit a larger block of text than can fit in the window. Textareas are created with widget commands of the
following form:

pat hName create textarea [option value option value ...]
Textareas are one of severa widgets that are designed to mirror the functionality and usage of the standard widgets

in Java's Abstract Windowing Toolkit (AWT). When textareas are created, they automatically get the tag
"Textared'. Textareas have default event handlers which define their behavior. These event handlers are defined

Page 95

on the tag "Textarea' for the "Run" event mode. See the section on Default Bindings for more details about the
event bindings.

The following options are supported for textareas:

-editable [18] Trueif textareais editable (default is true)

-fill [23] Specifiesfill color of textarea
-font [24] Specifies font to use for text

- pen [45] Specifies pen color of textarea
-text [56] The whole text within the textarea

Also, seethet ext [91] command that can be used to manipulate textareaitems.

Text items have default event bindings which can be used for emacs-style editing of them. See the section on
Default Bindings for more info.

Warning: The scrollbars on textareas are currently not hooked up to the text within the textarea.

Textfield Items

Textfield items are widgets that are used to enter a free-form single line of text. They can be edited with emacs-
style keys, and copied from and paste to with the mouse. Textfields are much like textareas, but are limited to one
line. Textfields are created with widget commands of the following form:

pat hName create textfield [option value option value ...]

Textfields are one of several widgets that are designed to mirror the functionality and usage of the standard widgets
in Java's Abstract Windowing Toolkit (AWT). When textfields are created, they automatically get the tag
"Textfield". Textfields have default event handlers which define their behavior. These event handlers are defined
on the tag "Textfield" for the "Run" event mode. See the section on Default Bindings for more details about the
event bindings.

The following options are supported for textfields:

-editable [18] Trueif textfield is editable (default istrue)

-fill [23] Specifiesfill color of textfield
-font [24] Specifies font to use for text

- pen [45] Specifies pen color of textfield
-text [56] The whole text within the textfield

Also, seethet ext [91] command that can be used to manipulate textfield items.

Text items have default event bindings which can be used for emacs-style editing of them. See the section on
Default Bindings for more info.

Window ltems

Window items are widgets that act like top-level windows within Pad++, but with no window dressing. They are
used to group a collection of items. They are similar to frames, except they have no window dressing and no default
event handlers. Windows are created with widget commands of the following form:

pat hName create window [[Xq Y; X, Yo] option value option value ...]
Windows are one of several widgets that are designed to mirror the functionality and usage of the standard widgets
in Java's Abstract Windowing Toolkit (AWT). When windows are created, they automatically get the tag

"Window". Windows have no default event handlers which define their behavior. Windows are basically the
essence of a Frame item type without the window dressing and without the event handlers.

Page 96

Unlike group items, windows do not set their size based on their contents. Rather, they are fixed size as specified
by the command line coordinates, or by the - wi dt h [68] and - hei ght [26] itemconfigure options. Windows
have their own coordinate system where (0, 0) specifies the panels lower left corner. Adding items to a window
adds them relative to the window’ s coordinate system.

The following options are supported for windows:

-di vi si bl e [16] Trueif events go through the window to its members
-fill [23] Specifiesfill color
-menbers [38] Thelist of members of the window

Also, see the addgr oupnmenber [2] and r enovegr ouprenber [72] commands that can be used to add and
remove items from the window.

Default Bindings

There are several default event bindings in Pad++ written in C++. In addition, the PadDraw sample application has
many event bindings defined in Tcl that may be useful. There are two classes of default event bindings, navigation
and widget bindings.

The navigation bindings allow panning on button 1, and zooming in and out on buttons 2 and 3, respectively. These
bindings are very simple versions and a serious application may want to redefine them. They can be turned on and
off thewith - def aul t Event Handl er s widget configuration option. By default, they are off. The bindings are:

* Pan with button 1:
» <ButtonPress-1> on"al | "
» <B1-Mation> on"al |'"
» <ButtonRelease-1> on"al | "

» Zoom in/out with buttons 2/3:
e <ButtonPress-2> on"al | "
» <B2-Moation> on"al | "
» <ButtonRelease-2> on"al | "
e <ButtonPress-3> on"al | "
» <B3-Moation> on"al | "
» <ButtonRelease-3> on"al | "

The widget bindings alow standard interaction with the user interface widgets. These bindings get created the first
time a widget of each type is created. The event bindings are defined on tags of the name of the widget. Widgets
are created with these tags by default, and so these bindings are defined by default. To disable these bindings, just
remove the tag from the widget. The event bindings are defined in the "Run" mode, and so for them to be active, the
Run modifier must be set. This can be done with:

. pad nodifier set "Run"

For key bindings to work, the system focus must be set to the pad widget. Y ou can do this with:

focus . pad

The default event bindings are:

* Button widgets:
¢ <Run-ButtonPress-1> on"Butt on"
¢ <Run-Bl1-Motion> on"Butt on"

Page 97

¢ <Run-ButtonRelease-1> on "But t on"

* Scrollbar widgets:
» <Run-ButtonPress-1> on"Scrol | bar"
* <Run-B1-Mation> on"Scrol | bar"
* <Run-ButtonRelease-1> on"Scr ol | bar"

 TextAreawidgets:
* <Run-KeyPress> on"Text ar ea"
¢ <Run-ButtonPress-1> on"Text ar ea"
* <Run-B1-Motion> on"Text ar ea"
» <Run-ButtonRelease-1> on "Text ar ea"
e <Run-ButtonPress-2> on"Text ar ea"
* <Run-B2-Motion> on"Text ar ea"
» <Run-ButtonRelease-2> on "Text ar ea"

* TextField widgets:

* <Run-KeyPress> on"Textfield"

¢ <Run-ButtonPress-1> on"Textfi el d"
¢ <Run-B1-Mation> on"Textfiel d"

¢ <Run-ButtonRelease-1> on"Text fi el d"
¢ <Run-ButtonPress-2> on"Textfi el d"
¢ <Run-B2-Mation> on"Textfiel d"

¢ <Run-ButtonRelease-2> on"Text fi el d"

* Frame widgets:
* <Motion> on"Frane"
e <lLeave> on"Frane"
¢ <Run-ButtonPress-1> on"Fr ane"
* <Run-B1-Mation> on"Frane"
* <Run-ButtonRelease-1> on "Fr ane"
e <ButtonPress-2> on"Frane"
» <B2-Motion> on"Fr ane"
e <ButtonRelease-2> on"Fr anme"
e <ButtonPress-3> on"Frane"
» <B3-Motion> on"Fr ane"
e <ButtonRelease-3> on"Fr anme"

Finally, the basic Text item has default event bindings that can be used to edit the text with emacs-style keys. To
use these bindings, the text item must be made editable and given the tag "Text". In addition, the Run mode must
be set, and the focus must be set to the Pad++ widget. An example creation of atext item that usesthe handlersis:

.pad create text -text Hello -editable 1 -tags "Text" -anchor nw
.pad nodifier set "Run"
focus . pad

 Text items:
¢ <Run-KeyPress> on"Text"
¢ <Run-ButtonPress-1> on"Text"
¢ <Run-B1-Mation> on"Text"
¢ <Run-ButtonRelease-1> on "Text "
¢ <Run-ButtonPress-2> on"Text"
¢ <Run-B2-Mation> on"Text"
¢ <Run-ButtonRelease-2> on "Text "

Page 98

Global TCL Variables

Pad++ defines several global Tcl variablesthat are available for use by Tcl applications. They are:

e Pad_Error True during Pad++ background errors.
» Pad_Version Current version of this Pad++ software
» Pad_Write Used in the <Write> event for an application to specify if the system should write out a

specific object or not. (See the write command and the <W'rite> event in the bind command.)
KPL-Pad++ Interface

As described in the section above on KPL ITEMS, Kpl is a byte-compiled language that comes with Pad++ that is
typically used for creating new objects. It is a general-purpose language, and has the ability to call certain Pad++
rendering routines. Some basic documentation is available with the Pad++ release in doc/kpl.troff.

There are two ways to interact with Kpl. The first is to make a Pad++ Kpl item with a Kpl renderscript (described
above). In this case, every time the item is rendered, the Kpl script will be executed. The second method is to use
thekpl command available directly from Tcl. Thekpl command has the following format:

kpl subcommand [args ...]

Where subcommand must be one of the following:

eval string
Byte-compiles and evaluates string as a Kpl script.

push vaue
Pushes value onto the top of the Kpl stack.

pop
Pops the top element off of the Kpl stack and returnsiit.

get name
Returns the current value of the Kpl variable, name.

set namevalue
Setsthe Kpl variable name to value.

There are several Kpl commands available for interacting with the Tcl environment, and for rendering directly onto
the Pad++ surface (when within arender callback). They are organized into afew groups as follows:

These commands provide a mechanism for accessing Tcl variables from Kpl.

tcl set nane val ue
Setsthe global Tcl variable nameto value.

tclset2 array_nane el enent val ue
Setsthe global Tcl array array_name(element) to value.

tcl get nane
Returns the value of the global Tcl variable name.

Page 99

tclget2 array_nane el enent
Returns the value of the global Tcl array array_name(element).

tcleval tcl _string
Evaluates the Tcl string tcl_string.

These commands provide basic drawing capability.

drawborder Il corner urcorner w dth border relief
Draws a 3D border within the rectangle specified by llcorner and urcorner (where each of those are 2D
vectors). Width specifies the zoomable width of the border. Border specifies the border color and must
have been previously allocated with the Pad++ al | ocbor der command. Relief specifiesthe style of
border, and must be one of: "r ai sed","f| at ", "sunken ri dge", "barup", or
"bar down".

,"'groove"”,

drawl i ne vector
Draws a line specified by vector. AsKpl vectors may be up to 16-dimensional, this vector can specify
up to 8 (X, y) points. Thisroutine will draw aline connecting as many points as are specified within
vector.

drawi mage i maget oken x y
Draws the image specified by imagetoken at the point (x, y). (Alsoseei mage commands aswell as
the description of i mage items). This command can only be called within arender callback.

dr awpol ygon vect or
Draws a polygon specified by vector. AsKpl vectors may be up to 16-dimensional, this vector can
specify up to 8 (x, y) points. This routine will draw a closed polygon connecting as many points as are
specified within vector.

drawt ext text position
Drawstext. Text specifies the text to be drawn. Position specifies the where the text gets drawn.
Position is atwo-dimensional vector specifying the (X, y) position. (Also seethe KPL set col or,
set font, andset f ont hei ght commands.)

get |l evel
Returns the current refinement level.

getsi ze
Returns the current size of the object, where size isthe larger of the width and height.

renderitemtagOrld
During arender callback triggered by the -renderscript option, this function actually renders the object.
During a-renderscript callback, all the items specified by tagOrld are rendered (and the current item is
not rendered unlessit isin tagOrld). This function may only be called during a render callback.
setabslinewi dth w dth
Sets the current drawing with to an absolute width. All lineswill be drawn with thiswidth. Thisisan
absolute width, so this specifies the width independent of the current view. 1.e., the line width will not
change as the view changes.

set capstyl e capstyle

Sets the capstyle of linesfor drawing. Capstyle may be any of: "butt", "projecting”, or "round".

Page 100

set col or col or
Sets the current drawing color to color. Note that color must have been previously allocated by the
al I occol or Pad++ command.

setfont font
Specifies the font to be used for rendering text for thisitem. Font must specify afilename which
contains an Adaobe Type 1 font, or the string "Li ne™ which causes the Pad++ line-font to be used.
Defaultsto "Ti mes- 12". (Also seetheset f ont hei ght command.)

set f ont hei ght hei ght
Sets the height of the font for future drawing with render callbacks. Height is specified in pixels. (Also
seetheset f ont command).

setjoinstyle joinstyle
Sets the joinstyle of linesfor drawing. Joinstyle may be any of: "bevel”, "miter", or "round".

setlinewidth width
Sets the current drawing width to azoomable width. All lineswill be drawn with thiswidth. Thisisa
zoomable width, so this specifies the width asit will look when the view has a magnification of 1.0.

These commands provide drawing commands in a style much like postscript.

cl osepath
Specifies the end of a path.

curveto vector
Draws a bezier curve. Here, vector isasix-dimensional vector. The current point plus these three points
specify four points which control the bezier curve.

fill
Fills the current path.

[ineto vector
Specifies astraight line in the current path from the current point to (x, y) specified by vector. Makes (x,
y) the current point.

novet o vector
Moves the current point within the current path to (x, y) specified by vector.

newpat h
Specifies the beginning of anew path.

stroke
Draws the current path with an outline only - the path is not filled.

These commands provide control over refinement.

i nterrupted
Returnstrue (1) if there has been an event during this render to interrupt it. It isup to objectsthat take
very long to render themselves to check this flag during the rendering. If it istrue (i.e., the render has
been interrupted), then the Kpl render routine should return immediately - without completing the
render. Generally, renders at refinement level 0 should aways be quite fast, but further refinement levels

Page 101

can take an arbitrarily long time to render as long as they are interruptible.

refine
Specifies that thisitem wants to be refined. Pad++ will schedule arefinement, and at some point in the
near future, the item will be re-rendered at the next higher refinement level. An item can use the current
level in conjunction with this command to render itself simply at first, and then fill in more and more
detail when it isrefined.

Here is an example that creates a Kpl item with arenderscript that exercises some of the commands described here.

Tcl code to | oad Kpl code and to create
Pad++ Kpl item
kpl eval 'triangle.kpl source
set pen [.pad alloccol or brown]
.pad create kpl -bb {-10:-10 110: 110} -renderscript {test_draw ng}

/* Kpl code (in a separate file)
to test the drawi ng conmands */
{
/* Draw a | oopi ng bezier curve */
3 setlinewidth
"penl tclget setcolor
newpat h
0: 0 noveto
200: 75:-100: 75: 100: O curveto
stroke

/* Draw a filled square */
'pen2 tclget setcolor

newpat h
0: 0 noveto
50:0 lineto
50:50 lineto
0:50 lineto

fill

/* Draw a square outline */
'pen3 tclget setcolor

newpat h
0: 0 noveto
50:0 lineto
50:50 lineto
0:50 lineto
0:0 lineto
stroke

/* Draw a square outline
with an absolute width */
1 setabslinew dth
'pend tclget setcolor

newpat h
0: 0 noveto
50:0 lineto
50:50 lineto

Page 102

0:50 lineto
0:0 lineto
st roke

/* Cause one | evel of refinenent.
Noti ce the bezier curve is rendered
at lowresolution at first,
and then inproves with refinement. */
getl evel =>
i 1<
refine

)

} -> test_draw ng

Page 103

