
Page 1

Pad++ Reference Manual
(Version 0.9)

Introduction

This reference manual describes the complete Tcl API to Pad++. It describes how to create and modify a Pad++
widget, and all the commands associated with a Pad++ widget that allow you to create and modify items, attach
event bindings to them, navigate within the Pad++ widget, etc.

This document in organized into the following sections:

• Padwish Synopsis
• TCL Synopsis
• Widget-Specific Options
• Widget Commands
• Overview of Item Types
• Default Bindings
• Global TCL Variables
• KPL-Pad++ Interface

Each section contains all the relevant entries in alphabetical order. Related commands and options are also grouped
together here to show which commands are related. Every command and itemconfigure option are listed. Note that
change bars appear wherever this document differs from the previous version.

Related Commands and Options
Items
create[21] Create new items
delete[23] Delete existing items
find[31] Search for items by various keys
isvisible [55] Return true if the specified item is visible.
itemconfigure Configure existing items
lower[60] Push an item lower in the drawing order
pick[65] Find the item under a point
popcoordframe[66] Pop a relative coordinate frame off of the stack
pushcoordframe[68] Add a new relative coordinate frame to the stack
raise[69] Bring an item higher in the drawing order
resetcoordframe[75]Reset coordinate frame stack to empty
setid[82] Change the id of an item
text[91] Modify text item
type[93] Get the type of an item

-aliases [1] (Read-only) Returns all aliases of the item
-arrow [7] Whether to draw arrow heads with this item
-arrowshape [8] The shape of drawn arrow heads
-height [26] Height of an item. Normally computed, but can be set to squash/stretch item
-html [27] The HTML item associated with an htmlanchor
-htmlanchors [28] The anchors associated with an HTML page
-image [29] Image data associated with item (allocated by image alloc)
-info [30] A place to store application-specific information with an item

Page 2

-ismap [31] True if an htmlanchor is an image map
-lock [35] Locks an item so it can not be modified or deleted
-state [53] State of an item (such as visited, unvisited, etc.)
-sticky [54] Specifies if an item should stay put when the view changes
-text [56] The text of any item containing text
-timerrate [57] Frequency timerscript should fire
-timerscript [58] Script associated with an item that fires at regular intervals
-title [59] Some items only: Title of an item
-url [63] The URL associated with an item
-width [68] Width of an item. Normally computed, but can be set to squash/stretch item
-zoomaction [70] A script that gets evaluated when an item is scaled larger or smaller than a set size

Item Transformations
animate [1] Animate item options asynchronously
bbox [10] Get the bounding box of an item
coords [20] Change the coordinates of an item
getsize[44] Get the size of an item (possibly within portals)
rotate [76] Rotate an item
scale [77] Change the size of an item relatively
slide [88] Move an item relatively in (x, y)

-anchor [3] The part of the item that -position refers to
-anchorpt [4] The (x, y) portion of -position
-angle [5] Specifies absolute rotation of item
-anglectr [6] Specifies absolute rotation of item, rotating about specified point
-position [47] The absolute position of the object (x, y, scale)
-rposition [51] The relative position of the object (to groups)
-scale [52] The (scale) portion of -position

View Transformations
center [15] Change the view so as to center an item
centerbbox [16] Change the view so as to center a bounding box
getview [47] Get the current view (possibly within portals)
getzoom [48] Get the current view magnification (possibly within portals)
moveto [62] Change the view (possibly within portals)
zoom[99] Zoom the view around a specified point

-lookon [36] Specifies the pad widget this item sees
-view [65] Specifies the view this item sees
-viewscript [66] A script that gets evaluated whenever the view is changed

Tags
addtag[5] Add a tag to an item
deletetag [23] Delete a tag from an item
dtag[23] Synonym for deletetag
gettags [45] Get the tags an item has
hastag [51] Determine if an item has a particular tag

-tags [55] List of tags associated with an item

Events
bind [11] Create, modify, access, or delete event bindings
bindtags [12] Specify whether events should go to the most-specific or most-general description

Page 3

focus [32] Set the focus for keyboard events
modifier [61] Manipulate user-defined modifiers

-events [20] True if item receives events, false otherwise

Groups
addgroupmember [2] Add an item to a group
getgroup [38] Get the group an item belongs to
removegroupmember [72] Remove an item from a group

-divisible [16] True if events go through a group to its members
-members [38] The list of members of a group

Layout
grid [50] Manage item layout in a grid as with the Tk grid command
layout [58] Layout items once
tree [92] Manage item layout with a dynamic graphical-fisheye view tree

Rendering
damage[22] Specify that a group of items needs to be redrawn
update [94] Force any requested render requests to occur immediately

-alwaysrender [2] True if the item must be rendered, even if the system is slow and the item is small
-border [10] Specifies border color of item
-borderwidth [11] Specifies width of border
-capstyle [12] Specifies how to draw line ends
-clipping [13] Controls if items are clipped to their bounding box when rendered
-dither [15] Render with dithering
-faderange [21] Range over which an item fades in or out
-fill [23] Specifies fill color of item
-font [24] Specifies font to use for text
-joinstyle [32] Specifies how to draw the joints within multi-point lines
-layer [33] The layer an item is on
-noisedata [42] Specifies parameters to render item with noise
-maxsize [37] The maximum size an item is rendered it (absolute or relative to window size)
-minsize [41] The minimum size an item is rendered it (absolute or relative to window size)
-pen [45] Specifies pen color of item
-penwidth [46] Specifies width of pen
-relief [49] Specifies how border should be rendered (raised, flat, sunken, ridge, groove)
-transparency [61]Transparency of an item. 0 is completely transparent, 1 is completely opaque
-visiblelayers [67]The layers that are visible within this view (just for portals and surface, item #1)

Renderscripts
border [13] Manipulate a fake 3D border for use in a render callback
color [18] Manipulate a color for use in a render callback
render [73] Configure and use renderer
renderitem [74] Render an item in a render callback

-renderscript [50]A script that gets evaluated every time an item is rendered
-bb [9] A script that gets evaluated to specify the bounding box of an item

File I/O
cache [14] Control item cache

Page 4

read [71] Read a .pad file
write [98] Write a .pad file (all the items on a widget)

-file [22] File an item should be defined by
-writeformat [69] Controls whether disk-based item is written out by copy or reference

Miscellaneous
configure [19] Modify the pad widget
font [33] Manipulate fonts and the font path
html [52] Manipulate and query an html page and its anchors.
image [53] Manipulate images
info [54] Get type-specific information about an item
layer [57] Manipulates layers
random [70] Generates a random integer
setlanguage [84] Set the language to be used for future callback scripts
settoplevel [87] Set the language to be used by the top-level interpreter
sound [89] Manipulate and play sounds
windowshape [97] Modify the shape of the top-level window that a pad widget is in

-donescript [17] A script to evaluate when a background action has completed
-errorscript [19] A script to evaluate when a background action has an error
-reference [48] What item an alias references
-updatescript [62] A script to evaluate when a background action has made progress

Utilities
clock [17] Create a clock to measure elapsed milliseconds
getdate [37] Get the current date in unix format
getpads [42] Get a list of all pad widgets currently defined
line2spline [59] Generate points for a spline that approximate a line
noise [63] Generate ’perlin’ noise
padxy [64] Convert a window point (x, y) to pad coordinates
spline2line [90] Generate points for a line that approximate a spline
urlfetch [95] Retrieve a URL over the internet in the background
warp [96] Warp (move) the core pointer

Widgets
-command [14] Callback for widgets
-editable [18] True if text item is editable
-from [25] Starting value of valuator widget
-linesize [34] Amount widget should change to represent a line change
-memberlabels [39]List of labels for a pull-down or pop-up menu
-menubar [40] Menubar associated with a frame
-orientation [43] Orientation of widget (horizontal or vertical.)
-pagesize [44] Amount widget should change to represent a page change
-to [60] Ending value of valuator widget
-value [64] Current value of valuator widget

Debugging
printtree [67] Print all the items on the pad surface in their internal tree structure

Extensions
addoption [4] Create a new option for an existing type
addtype [6] Create a new item type

Page 5

Item Types

• Item Options
• Alias Items
• Button Items
• Canvas Items
• Checkbox Items
• Checkboxmenuitem Items
• Choicemenu Items
• Frame Items
• Grid Items
• Group Items
• HTML Items
• Image Items
• KPL Items
• Label Items
• Line Items
• Menu Items
• Menubar Items
• Menuitem Items
• Menu Items
• Pad Items
• Panel Items
• Polygon Items
• Portal Items
• Rectangle Items
• Scrollbar Items
• Spline Items
• TCL Items
• Text Items
• Text items have default event bindings which can be used for emacs-style editing of them. See the

section on Default Bindings for more info.
• Textfield Items
• Window Items

Executables
When Pad++ is built and installed correctly, there are two executable files that may be run. padwish runs a version
of the Tcl interpreter extended with the pad widget. This is a complete superset of the standard Tk wish program.
The pad command is the sole addition which is described below. In addition, the Pad++ distribution comes with
an application written entirely in Tcl called PadDraw. This application is a general-purpose drawing and demo
program that shows many capabilities of the pad widget. There are two scripts which can be used to run Pad++.
’pad’ is a script which sets the appropriate environment variables and runs padwish, giving a Tcl prompt.
’paddraw’ is started by running the paddraw script which automatically runs padwish and starts the Tcl PadDraw
program. When running PadDraw by executing paddraw, the Tcl interpreter is not available.

Padwish Synopsis

padwish [options] [arg arg ...]

Page 6

Valid options are:

-colormap colormap
Specifies the colormap that padwish should use. If colormap is "new", then a private colormap is
allocated for padwish, so images will look nicer (although on some systems you get a distracting flash
when you move the pointer in and out of a PadDraw window and the global colormap is updated).

-display display
Display (and screen) on which to display window.

-geometry geometry
Initial geometry to use for window.

-help
Print a summary of the command-line options and exit.

-language
Specifies what scripting language the top-level interpreter should use. Pad++ always supports Tcl, but
can be compiled to use the Elk version of Scheme also. In addition, Pad++ provides a mechanism to
support other interpreted scripting languages as well. Defaults to ’tcl’.

-name name
Use name as the title to be displayed in the window, and as the name of the interpreter for send
commands.

-norgb
Force all images to be loaded without RGB data. This means that images will be stored with one byte
per pixel instead of the normal 5 bytes per pixel. As a result, images will not be able to be dithered.

-sharedmemory
Specifies if Pad++ should try and use X shared memory. Some machines (notably a particular Solaris 5.4
machine) crashes and the X server dies when Pad++ is used with shared memory, so it can be disabled if
there is trouble. Defaults to 1 (true).

-sync
Execute all X server commands synchronously, so that errors are reported immediately. This will result
in much slower execution, but it is useful for debugging.

-visual visual
Specifies the visual type that padwish should use. The valid visuals depend on the X server you are
running on. Some common useful ones are "truecolor 24" and "truecolor 12", which specify 24 bit and
12 bit mode, respectively.

--
Pass all remaining arguments through to the script's argv variable without interpreting them. This
provides a mechanism for passing arguments such as -name to a script instead of having padwish
interpret them.

TCL Synopsis

pad [pathName [options]]

Page 7

The pad command creates a new window (given by the pathName argument) and makes it into a Pad++ widget.
If no pathName is specified, a unique top-level window name will be generated. Additional options may be
specified on the command line or in the option database to configure aspects of the Pad++. The pad command
returns the name of the created window. At the time this command is invoked, there must not exist a window named
pathName, but pathName's parent must exist.

Once a Pad++ widget is created, there are five ways of writing Tcl code for it. They are:

• Configuring the widget: Each widget has several configuration options that control the widget as a whole.
For example, -width and -height control the geometry of the widget.

• Executing widget commands: There are many commands associated with the widget. They are actually
sub-commands of the primary widget command. When a new pad widget is created, a command is also
created whose name is the name of the widget. For instance, evaluating pad .pad creates a widget named
.pad, and a command named .pad. For example, to find out what the current view on the pad widget is,
use the getview command with: .pad getview.

• Creating items on the widget: Each pad widget can contain many graphical items, such as lines, text, etc.
These are all created with the create sub-command. For example, .pad create line 0 0 10 10
creates a line from the origin to the point (10, 10).

• Configuring those items: Once items have been created, they can be modified with the itemconfigure
sub-command. For example, supposing that the previous line had an id of 2, we could change its pen color
and width with: .pad itemconfigure 2 -pen red -penwidth 5

• Accessing global Pad variables: The pad widget declares certain global Tcl variables that can be used by
applications. For example, to see the current version of Pad++, examine the Pad_Version variable.

This version of Pad++ works with either Tcl7.5/Tk4.1 or Tcl7.6/Tk4.2.

Note that in this reference manual, optional parameters are listed in square brackets, [...]. While this is traditional
for reference documentation, the Tcl/Tk documentation uses ?...? to denote optional parameters in order to avoid
confusion with the meaning of [...] in the Tcl language. We decided to risk the confusion with Tcl for the increased
clarity of square brackets.

Widget-Specific Options

Name: background
Class: Background
Command-Line Switch: -background

Specifies the normal background color to use when displaying the widget.

Example:
.pad config -background gray50

Name: closeEnough
Class: CloseEnough
Command-Line Switch: -closeEnough

Specifies a floating-point value indicating how close the mouse cursor must be to an item before it is

Page 8

considered to be "on" the item. Defaults to 3.0.

Name: cursor
Class: Cursor
Command-Line Switch: -cursor

Specifies the mouse cursor to be used for the widget. The value may have any of the forms acceptable to
Tk_GetCursor.

Name: debugBB
Class: DebugBB
Command-Line Switch: -debugBB

Turns on and off display of bounding boxes. Default is 0.

Name: debugEvent
Class: DebugEvent
Command-Line Switch: -debugEvent

Turns on and off debugging of events. Default is 0. When event debugging is turned on, pad outputs a
description of event handlers as they fire. In addition, if a break or event in a handler stops some events
from firing, those events not fired are shown. By default, the event debugging output goes to stdout,
however, it can be sent to a Tcl variable with the -debugOut configure option. Also note that PadDraw
comes with a graphical interface that creates a GUI for seeing and examining events as they fire. This
graphical event debugger can be used in other pad applications. See draw/debugevent.tcl.

Name: debugGen
Class: DebugGen
Command-Line Switch: -debugGen

Turns on and off general debugging. Default is 0.

Name: debugOut
Class: DebugOut
Command-Line Switch: -debugOut

Controls where debug output goes. By default, debug output is sent to stdout. However, the -debugOut
configure option can specify a Tcl variable that all debug output will be appended to. It is then possible
to set a Tcl trace on that variable to be notified whenever debug output is available. Currently, only -
debugEvent uses the -debugOut variable.

Example: Evaluating ".pad config -debugOut foo" will cause all future debug output to be
appended to the Tcl variable ’foo’.

Name: debugRegion
Class: DebugRegion
Command-Line Switch: -debugRegion

Turns on and off visual display of portion of the screen that actually gets re-rendered. Used to debug
region management. Default is 0.

Name: defaultEventHandlers
Class: DefaultEventHandlers
Command-Line Switch: -defaultEventHandlers

Page 9

Turns on and off the default navigation event handlers. The default handlers are very simple. They
allow basic panning with mouse button #1, zooming in with button #2, and zooming out with button #3.
Default is 0.

Name: defaultRenderLevel
Class: DefaultRenderLevel
Command-Line Switch: -defaultRenderLevel

Specifies the default render level to use to display the Pad if no specific level is specified. The render
level is generally used for efficiency where render level 0 is the fastest and least pretty way to render the
pad (text is uglier, smaller items are not rendered, some items are rendered at a lower resolution). As the
render level goes higher, the pad is rendered slower and prettier

Name: desiredFrameRate
Class: DesiredFrameRate
Command-Line Switch: -desiredFrameRate

Specifies the desired frame rate (in frames per second). This number is used by the Pad++ rendering
engine to decide how to render the scene while animating. If a high frame rate is requested, small objects
may not be rendered (see -alwaysrender) flag, and some objects may be rendered at low resolution.
The default is 20 frames/second.

Name: dissolveSpeed
Class: DissolveSpeed
Command-Line Switch: -dissolveSpeed

Specifies how quickly dissolves should occur upon refinement. When the pad widget refines, it uses a
dissolve effect instead of a simple buffer swap. The dissolve is controlled by -dissolveSpeed. This
option may vary between 0 and 3 where 0 is a simple buffer swap, 1 is a fast dissolve, and 3 is the
slowest dissolve. The default is 2.

Name: doubleBuffer
Class: DoubleBuffer
Command-Line Switch: -doubleBuffer

Specifies if the system should use double buffering for rendering. If doubleBuffer is set to 0 (off),
rendering will be a little faster, but the screen will flash quite a bit. Mostly useful for debugging. Default
is 1.

Name: fastPan
Class: FastPan
Command-Line Switch: -fastPan

Pad++ normally does fast pans, i.e., copying the portion of the screen that doesn't change, and re-
rendering the new portion. This results in an approximation which can make the view be off by up to a
half of a pixel. Fast panning can be disabled by setting this flag to 0 which results in slower but more
accurate pans. Default is 1.

Name: fontCacheSize
Class: fontCacheSize
Command-Line Switch: -fontCacheSize

Page 10

Pad++ employs a simple caching mechanism when drawing text in Type1 fonts. The caching mechanism
remembers what size, font and bitmap it used when it last drew a particular character, and if that
character is drawn again at the same size and font, Pad++ reuses the last bitmap image for that character
rather than generating the bitmap for the character from its outline description. This greatly increases the
speed of rendering large quantities of text.

You can configure the caching mechanism using the -fontCacheSize option. The font cache size is
measured in Kilobytes (rounded to the nearest 100K). Setting -fontCacheSize to 0 turns off font caching,
and characters are always drawn from their outline descriptions. The default value is 100 which produces
significantly faster font rendering than using no font cache. Values above 100 have a lesser impact on
performance, but may be effective for applications which use a lot of text with different fonts and sizes.

Name: gamma
Class: Gamma
Command-Line Switch: -gamma

Specifies 'gamma' used for allocating colors for images. This number controls how light or dark an image
appears to be. Larger numbers will make images appear lighter. Default is 1.0.

Name: height
Class: Height
Command-Line Switch: -height

Specifies the height of the Pad in pixels. Defaults to 400.

Name: heightmmofscreen
Class: HeightMMOfScreen
Command-Line Switch: -heightmmofscreen

Specifies the height of the physical screen in millimeters. Normally, this information is given by the X
server, but sometimes it is incorrect (for example, on some laptops). If it is incorrect, coordinates on the
Pad++ surface will be incorrect. If this value is set to 0, the X server information will be used. Defaults
to 0.

Name: interruptible
Class: interruptible
Command-Line Switch: -interruptible

If this flag is true (1), then animations and slow renders will be interrupted by events (mouse and
keyboard). Defaults to true (1).

Name: maxZoom
Class: MaxZoom
Command-Line Switch: -maxzoom

This controls the maximum zoom (in and out) that any view is allowed. This way, it not possible to
crash pad by zooming in or out too far. It defaults to 100,000,000 which gives 16 orders of magnitude of
zooming (8 in and 8 out). Note that the amount one can zoom in is determined by the product of the (x,
y) position and the zoom. So, while you can zoom into the position (0, 0, 100000000), you can only
zoom into (1000, 1000, 100000). Setting -maxzoom to 0 disables the checking.

Name: mediumObjSize
Class: MediumObjSize
Command-Line Switch: -mediumObjSize

Page 11

Pad++ tries to keep up the display rate, even when the scene gets complicated. If the system becomes
slower than the requested frame rate, it both stops drawing small objects, and it draws medium-sized
objects in a very ugly fashion. This option configures the size below which objects are considered to be
medium-sized. Default is 100 pixels. (Also see -smallObjSize configuration option.)

Name: refinementDelay
Class: RefinementDelay
Command-Line Switch: -refinementDelay

Specifies the delay in milliseconds after the last X event to start refinement. Default is 1000.

Name: smallObjSize
Class: SmallObjSize
Command-Line Switch: -smallObjSize

Pad++ tries to keep up the display rate, even when the scene gets complicated. If the system becomes
slower than the requested frame rate, it both stops drawing small objects, and it draws medium-sized
objects in a very ugly fashion. This option configures the size below which objects are considered to be
small-sized. Default is 10 pixels. (Also see -mediumObjSize configuration option.)

Name: sync
Class: Sync
Command-Line Switch: -sync

Specifies if X event synchronization should be turned on. When it is on, the X server executes every
command as it is executed rather than caching them and executing commands in groups. Generally
useful just for debugging. Default is 0.

Name: units
Class: Units
Command-Line Switch: -units

Specifies unit dimensions for all coordinates used by Pad++. It can be any of "points", "mm", "inches",
or "pixels". Default is points.

Name: width
Class: Width
Command-Line Switch: -width

Specifies the width of the Pad in pixels. Defaults to 400.

Name: widthmmofscreen
Class: WidthMMOfScreen
Command-Line Switch: -widthmmofscreen

Specifies the width of the physical screen in millimeters. Normally, this information is given by the X
server, but sometimes it is incorrect (for example, some laptops). If it is incorrect, coordinates on the
Pad++ surface will be incorrect. If this value is set to 0, the X server information will be used. Defaults
to 0.

Widget Commands

Page 12

The pad command creates a new Tcl command whose name is pathName. This command may be used to invoke
various operations on the widget. It has the following general form:

pathName option [arg arg ...]

Option and the args determine the exact behavior of the command. The following widget commands are
possible for Pad++ widgets:

[1] pathName animate subcommand [args ...]

The animate command is the key to a sophisticated animation engine that allows asynchronous
animations of most options of items on the Pad++ surface. An item can be moved across the screen
while its color is being changed while another is being rotated. This all happens in the background so
that Pad++ continues to process events while animations happen.

The basic units of an animation are:
• path: Defines the values visited by the changing option
• channel: Associates an object with a path and the property to animate
• animation:Groups channels and animations as a single unit

A very simple example that creates and then zooms some text follows:

set txt [.pad create text -text "Hello World" -pen yellow \
-pos {0 -50 0.2} -anchor center]

set txtpath [.pad anim create path -path {{0 -50 0.2} {0 -50 5}} \
-endtime 2]

set txtchannel [.pad anim create channel -object $txt \
-path $txtpath -option -pos]

.pad anim start $txtchannel

The animate command contains several subcommands. Briefly, they are:

• create: Create an animation unit
• configure: Configure an animation unit
• delete: Delete an animation unit
• start: Begin play of channel or animation
• interrupt: Stop channel or animation before it is complete
• getvalue: Get interpolated value from path

The animate subcommands in more detail are:

pathName anim create AnimationUnit [option value ...]

This creates one of the basic animation units (paths, channels, and animations.) When one creates an
animation unit, a unique token for that unit is returned. Use the returned token to refer to that unit for
future configuration/manipulations.

Example:
set path [.pad anim create path -path {0 1}]
set channel [.pad anim create channel -path $path]
.pad anim configure $channel -endtime 3

Following are all of the options that can be specified for each AnimationUnit:

Page 13

Path configuration options:

-path [path]:
path is the set of "points" that defines the values to be visited by the curve. The "points" define
a "polyline" in one, two, or three dimensions.

Example:
.pad anim config -path {1.0 2.0 3.0}
.pad anim config -path {{1.0 2.0} {3.0 4.0} {5.0 6.0}}
.pad anim config -path {{1.0 2.0 3.0} {4.0 5.0 6.0} \

{7.0 8.0 9.0}}

-timepath [timepath]:
Timepath is a set of time value pairs that define both the values and the time that each value
should be reached. This allows one to more exactly specify the the timing of the animation and
to produce animations that do not operate at a constant speed. One use for such animations is
when one wants to simulate a physics-like animation by calculating position of an object at
specific times to define an animation. If a path is specified with -endtime instead of -
endtime, the first value of each data set is treated as a time. Times must increase in value
from one data set to the next. Each data set must contain at least two values, a time value and
one, two, or three values to specify the configuration values defining the path.

Examples:
.pad anim config -timepath {{1.0 2.0} {3.0 4.0} {5.0 6.0}}
.pad anim config -timepath {{1.0 2.0 3.0} {4.0 5.0 6.0} \

{7.0 8.0 9.0}}

(See bouncing ball example below.)

-begintime [timeInSec]
Time, in seconds, that defines when the first value of the path is obtained

-endtime [timeInSec]:
Time, in seconds, that defines when the last value of the path is obtained

-intime [inTime]:
One may want to have the animation start somewhere other than at the first value of the path.
This can be accomplished be specifying the -endtime which must lie between -endtime
and -endtime (inclusive). In combination with -endtime, a slice of an animation can be
specified.

-order order
The number of parameters per entry in the path. Order may be 1, 2, or 3, and must match the
order of the option the path is used with.

-outtime [inTime]:
One may want to have the animation end somewhere other than at the last value of the path.
This can be accomplished be specifying the -endtime which must lie between -endtime
and -endtime (inclusive). In combination with -endtime, a slice of an animation can be
specified.

-post [postCondition]
This specifies what happens when the current time passes -endtime. The possible values for
this option are: constant, cycle, or oscillate

Page 14

• constant: If the current time is after -endtime, the last value of the path is applied.

• cycle: If the current time passes -endtime, the interpolated value is projected back
to the first value in the path, and the path is cycled through from the beginning.

• oscillate: If the current time passes -endtime, the interpolated value is reflected from
the final value in the path, toward the first value.

-pre [preCondition]:
This specifies what happens when the current time is before -endtime. The possible values
for this option are: constant, cycle, or oscillate

• constant: If the current time is before -endtime, the first value of the path is applied.

• cycle: If the current time is just before -endtime, the interpolated value is projected
to the last value in the path, and the path is cycled through from the end toward
the beginning.

• oscillate: If the current time is before -endtime, the interpolated value is reflected back
from the first value in the path, toward the final value.

-siso [boolean]
Indicates whether to apply a slow-in-slow-out effect to the animation. Default value is "0" (off).

Example:
set rec [.pad create rectangle 0 0 100 100 -fill blue]
set recp [.pad anim create path -path {{-100 0 1} {100 0 1}} \

-endtime 2 -siso 1]
set recc [.pad anim create chan -path $recp -object $rec \

-option -pos]
.pad anim start $recc

Channel configuration options:

-path [pathToken]
pathToken specifies the animation path to be applied to the channel's option

-object [tagOrId]
tagOrId specifies the object/objects that are to be affected by the channel

-option [option]
Option specifies the item configuration option that will be animated by interpolating along the
animation path. The channel's path must be of the same order as the option. This means that if
the option to be animated is -endtime, the path is a single list of values (i.e. -path {1.0 2.0
4.0 8.0}), if the option is -endtime, the path should be a list of lists containing three values
each (i.e. -path {{1.0 3.0 4.0} {2.0 1.0 7.0} {5.0 8.0 10.0}}).

Presently supported options that one may want to animate:

Order 1:
• -angle
• -penwidth
• -transparency

Page 15

Order 3:
• -position (min. abbreviation -pos)
• -rposition (min. abbreviation -rpos)
• -fillcolor (rgb values from 0 to 255)
• -pencolor (rgb values from 0 to 255)
• -view (applies only to pad surfaces)
• -anglectr (angle Xcenter Ycenter)

-begintime [timeInSec]
Sets the -endtime of the path associated with the channel. This is just a convenience.
Beware that if you set the -endtime of a channel, all channels using this same path are
affected. (See -endtime for paths, above)

-endtime [timeInSec]
Sets the -endtime of the path associate with the channel. This is just a convenience. Beware
that if you set the -endtime of a channel, all channels using this same path are affected. (See
-endtime for paths, above)

Animation configuration options:

-members [listOfChannelsAndAnimations]:
Used to add animatables to an animation. Both channels and animations are animatable and
can be a member of an animation. An animation cannot be a member of itself.

Example:
.pad anim config anim0 -members "chan0 chan1 anim1"

-begintime [timeInSec]:
If an animation (anim0) is a member of another animation (anim1), -endtime specifies the
delay time after anim1 is started, that anim0 should be started

-endtime [timeInSec]
By default, this is the amount of time for all animatables to finish their animation. If set to a
value less than the default, all animatables will stop at the parent animation -endtime. If set
to a value greater than the default, there is no noticeable effect.

-speedfactor [speedFactor]
By default this is 1.0. If one sets it to 2, the animation will be played twice as fast etc.

pathName anim configure AnimationUnit [option value ...]

One can configure an animation unit by using its configuration options. If a configuration option is
entered without specifying a value to set the option, the current value of the option is returned. The
options that can be configured on any animation unit are the same that apply with the create
command.

Example:
.pad anim config path0 -endtime 10

pathName anim delete AnimationUnit

Deletes an AnimationUnit.

Page 16

pathName anim start AnimationUnit

Begins the playing of an animation or of a channel.

pathName anim interrupt AnimationUnit

Stops the playing of an animation or of a channel, before play has completed.

pathName anim getinterpval timeInSec

Returns the the interpolated value along the path given the the time in seconds. This may be useful
when one wants to use a path for something other than animations, or just to check values along an
animation path. This command applies only to animation paths.

Notes concerning animations:

Commands and options can be abbreviated with any string that uniquely identifies the command or
option of interest.

When one changes the -endtime or -begintime of a channel, it is the path that is associated with
the channel that is actually affected. Be careful that the affected path is not also being used in another
channel that needs a different -endtime and -begintime. If it is, make another path with the same
data and the desired -endtime and -begintime.

When directly playing channels via a command such as ’.pad anim start channelToken’,
each channel has its own timer. So if you have several channels playing in overlapping time, you have
several timers going. If you place several channels into a parent animation, when you play that
animation all the channels are played using one timer. If you place animations within a parent animation,
when the child animations are playing, each uses its own timer.

There is a conflict between angles, groups, and animations. For example, if we have a group (10) with
items 5 and 6 in it, and we make an animation that changes that relative position of item 5 and tries to
rotate the group at the same time, there is a problem. -rposition does not account for the -angle of
the group. So the orientation of the motion of item 5 is not rotated with the group.

Example animations:

##
IMPROVED HELLO WORLD ANIMATION
Here is an animation to illustrate the combining of
channels and animations into a single animation.
##

Set up hello world channel
set txt [.pad create text -text "Hello World" -pen yellow \

-pos {0 -50 0.2} -anchor center]
set txtpath [.pad anim create path -path {{0 -50 0.2} {0 -50 5}} \

-endtime 2]
set txtchannel [.pad anim create channel -object $txt -path $txtpath \

-option -pos]

Make four rectangles
for {set i 0} {$i<4} {incr i} {

Page 17

.pad create rectangle 0 0 100 100 -fill black -pos {0 50 1} -tags rect$i
}

Make a two paths, one first order and one third order
set p0 [.pad anim create path -path {0 180 90}]
set p1 [.pad anim create path -path {{0 0 0} {255 0 0} {0 255 0} \

{0 0 255} {0 0 0}} -post cycle]

Make two channels for each object.
One channel for changing -angle
the other for changing -fill

set j 0
for {set i 0} {$i<8} {incr i 2} {

set obj [.pad find withtag rect$i]
set c$i [.pad anim create channel -object $obj -option -angle \

-path $p0 -begintime 0 -endtime 6]
set c[expr $i+1] [.pad anim create channel -object $obj -option -fill \

-path $p1 -begintime 3 -endtime 12]
incr j

}

Make three animations containing only channels
and one animation containing channels and the
other animations
set a0 [.pad anim create anim -members "$c0 $c1" -endtime 10 \

-begintime 2.5]
set a1 [.pad anim create anim -members "$c2 $c3" -endtime 10 \

-begintime 5.0]
set a2 [.pad anim create anim -members "$c4 $c5" -endtime 10 \

-begintime 7.5]
set a3 [.pad anim create anim -members "$txtchannel $c6 $c7 $a0 $a1 $a2" \

-endtime 10 -begintime 0]

.pad anim start $a3

###
BOUNCE:
This example shows a bouncing ball animation.
Kinematic equations are used to calculate the
path for a bouncing ball that looses energy.
A -timepath is created and applied to an oval
in a rectangular box.
###

.pad moveto 0 500 0.2

set box [.pad create rectangle -165 -50 165 1400 -penwidth 20]
set ball [.pad create oval 0 0 100 100 -fill blue -pos "0 0 1"]
set boxBall [.pad create group -members "$ball $box"]

Page 18

set t 0.0
set a -98.0
set v0 500.0
set x0 0.0
set tpath ""
set delT 0.01
set coefRes 0.90

set endt [expr 2.0*$v0/$a]
set endit [expr abs(int($endt/$delT))]
set refTime 0.0

for {set j 1} {$j < 20} {incr j 1} {
for {set i 0} {$i <= $endit} {incr i 1} {

set t [expr $i*$delT]
lappend tpath "[expr $refTime + $t] 0 [expr ((0.5)*$a*$t*$t \

+ $v0*$t + $x0)] 1"
}

set v0 [expr ($v0*pow($coefRes,$j))]
set refTime [expr $refTime + $t]
set endt [expr 2.0*$v0/$a]
set endit [expr abs(int($endt/$delT))]

}

set ballpath [.pad anim create path -timepath $tpath \
-endtime [expr $refTime + $t] -intime 5]

set ballchan [.pad anim create channel -object $ball -path $ballpath \
-option -rpos]

set ballanim [.pad anim create animation -members $ballchan]

run the animation with:

.pad anim start $ballanim

##
USING A POLYLINE TO DEFINE A PATH:
Here is an example of using a polyline to define
a -path (a -timepath could be created by adding
times in the "for" loop creating the pathlist).
##

To use the script, create a polyline (try one in the
form of a big spiral), make sure it is selected,
then enter the following code:

set coordlist [.pad coords [.pad find withtag selected]]
if {$coordlist == ""} {

set coordlist {0 0 100 0 100 100 0 100 0 0}
}
set len [llength $coordlist]
set curscale [lindex [.pad getview] 2]

Page 19

set pathlist ""
for {set i 0} {$i < $len} {incr i 2} {

lappend pathlist "[lindex $coordlist $i] [lindex $coordlist \
[expr $i + 1]] $curscale"

}

Here is an example of using "pathlist" to
create an animation to move a rectangle

set obj [.pad create rectangle 0 0 50 50 -fill red]
set coordPath [.pad anim create path -path $pathlist]
set rectChan [.pad anim create channel -path $coordPath -object $obj \

-option -pos -endtime 10]
set myanim [.pad anim create anim -members $rectChan]

.pad anim start $myanim

##
USING A TIMEPATH
Here is an example of using the coordinates
to make a -timepath from coordPath, enter:
This assumes that the previous example has
already been run.
##

set timepathlist ""
set time 0.0
for {set i 0} {$i < $len} {incr i 2} {

lappend timepathlist "[expr $time + log(int($i+1))] \
[lindex $coordlist $i] [lindex $coordlist [expr $i + 1]] $curscale"

set time [expr $time + (1.0/($i+1.0))]
}

set coordPath [.pad anim create path -timepath $timepathlist]
set rectChan [.pad anim create channel -path $coordPath -object $obj \

-option -pos]
set mytanim [.pad anim create anim -members $rectChan]

.pad anim start $mytanim

[2] pathName addgroupmember [-notransform] tagOrId groupTagOrId

Add all items specified by tagOrId to the group specified by groupTagOrId. If groupTagOrId specifies
more than one item, the first one is used. The items are added to the end of the group in the order
specified by tagOrId. Groups automatically update their bounding boxes to enclose all of their members.
Thus, they will grow and shrink as their members change.

By default, items are transformed so they don't change their location when added to a group, even if the
group has a transformation. This is implemented by transforming the item's transformation to be the

Page 20

inverse of the group's transformation. If the -notransform flag is specified, this inverse transformation is
not applied, and the item will move by the group's transformation when added. (Also see the
removegroupmember, and getgroup commands). Returns an empty string.

Example :
set id0 [.pad create line 0 0 100 100]

 254
 set id1 [.pad create line -10 20 80 -60]
 255
 set gid [.pad create group -members "$id0 $id1"]
 256

 .pad ic $gid -members
 254 255

 set id3 [.pad create rectangle -20 -20 130 40]
 266

 .pad addgroupmember $id3 $gid
 .pad ic $gid -members

254 255 266

.pad removegroupmember $id0 $gid
 .pad ic $gid -members
 255 266

group id = 256Bounding box
of group

group id = 256

Page 21

 .pad getgroup $id2
 256

[3] pathName addmodifier modifier

WARNING: addmodifier is an obsolete command and will be removed in the next release. Replace
all uses of addmodifier with the ’modifier add’ command.

[4] pathName addoption [-nowrite] typename optionname optionscript default

Add a new option (named optionname) to all objects of type typename. typename must either be
a built-in type, a user-defined type previously defined by addtype, or the special word "all" which
means that this option applies to all types. When optionscript is called, the following arguments
will be added on to the end of the script:

pathName: The name of the pad widget the item is on
item: The id of the item being configured
[value]: Optional value. If value is specified, then the option must be set to this value.

optionscript must return the current (or new) value of the option. default specifies the default
value of this option. This is used to determine if the option should be written out when the write
command is executed. Note that the option will only be written out if the value is different than the
default. If -nowrite is specified, then this option won't be written out. See the section APPLICATION-
DEFINED ITEM TYPES AND OPTIONS in the Programmer’s Guide for more information. (Also see
the addtype command.)

[5] pathName addtag tagToAdd tagOrId ...

For each item specified by the list of tagOrIds, add tagToAdd to the list of tags associated with the item if
it isn't already present on that list. It is possible that no items will be specified by tagOrId, in which case
the command has no effect. This command returns an empty string.

This command is designed to be used in conjunction with the find command. Notice the necessity of
using eval in this example: eval .pad addtag foo [.pad find withtag bar]

[6] pathName addtype typename createscript

Add typename to the list of allowed user defined types. When a new object of type typename is
created, the createscript will be evaluated, and it must return an object id. When createscript
is evaluated, the pad widget the object is being created on will be added on as an extra argument,

group id = 256

Page 22

followed by any parameters before the options. See the section APPLICATION-DEFINED ITEM
TYPES AND OPTIONS in the Programmer’s Guide for more information. (Also see the addoption
command.)

[7] pathName allocborder color

WARNING: allocborder is an obsolete command and will be removed in the next release. Replace
all uses of allocborder with the ’border alloc’ command.

[8] pathName alloccolor color

WARNING: alloccolor is an obsolete command and will be removed in the next release. Replace
all uses of alloccolor with the ’color alloc’ command.

[9] pathName allocimage file [-norgb]

WARNING: allocimage is an obsolete command and will be removed in the next release. Replace
all uses of allocimage with the ’image alloc’ command.

[10] pathName bbox [-sticky] tagOrId [tagOrId tagOrId ...]

Returns a list with four elements giving the bounding box for all the items named by the tagOrId
argument(s). The list has the form "x1 y1 x2 y2" such that the drawn areas of all the named elements are
within the region bounded by x1 on the left, x2 on the right, y1 on the bottom, and y2 on the top. If -sticky

is specified, then the bounding box of the item in sticky coordinates, that is, the coordinates of a sticky
item that would appear at the same location on the screen is returned. If no items match any of the
tagOrId arguments then an empty string is returned.

If the item is sticky then bbox returns the bounding box of the item as it appears for the current view.
That is, the bounding box will be different when the view is different. If -sticky is specified, then the
bounding box returned is independent of the current view (i.e., it returns the bounding box as if the view
was "0 0 1").

If the item is the Pad++ surface (item #1), then bbox will refer to the bounding box of the portion of the
surface that is currently visible (based on the view and window size).

.pad bbox 27 37
-75 -55 68 79

24

27

37

42

Page 23

[11] pathName bind tagOrId [sequence [command]]

This command associates command with all the items given by tagOrId such that whenever the event
sequence given by sequence occurs for one of the items the command will be invoked.

This widget command is similar to the Tk bind command except that it operates on items on a Pad++
widget rather than entire widgets. See the Tk bind manual entry for complete details on the syntax of
sequence and the substitutions performed on command before invoking it. The Pad++ widget defines
extensions described below, but it is implemented as a complete superset of the standard bind
command. I.e., you can do everything you can with the canvas with exactly the same syntax, but you can
also do more.

If all arguments are specified then a new binding is created, replacing any existing binding for the same
sequence and tagOrId (if the first character of command is "+" then command augments an existing
binding rather than replacing it). In this case the return value is an empty string. If both command and
sequence are omitted then the command returns a list of all the sequences for which bindings have been
defined for tagOrId.

The only events for which bindings may be specified are those related to the mouse and keyboard, such
as Enter, Leave, ButtonPress, Motion, ButtonRelease, KeyPress and KeyRelease. In addition, Pad++
supports some extra bindings including: Create, Modify, Delete, PortalIntercept, and Write. The
handling of events in Pad++ uses the current item defined in Item IDs and Tags in the Programmer’s
Guide. Enter and Leave events trigger for an item when it becomes the current item or ceases to be the
current item; note that these events are different than Enter and Leave events for windows. Mouse-
related events are directed to the current item, if any. Keyboard-related events are directed to the focus
item, if any (see the focus command below for more on this).

It is possible for multiple bindings to match a particular event. This could occur, for example, if one
binding is associated with the item's id and another is associated with one of the item's tags. When this
occurs, all of the matching bindings are invoked. The order of firing is controlled by the pad bindtags
command. The default is that a binding associated with the all tag is invoked first, followed by one
binding for each of the item's tags (in order), followed by a binding associated with the item's id. If there
are multiple matching bindings for a single tag, then only the most specific binding is invoked. A
continue command in a binding script terminates that script, and a break command terminates that
script and skips any remaining scripts for the event, just as for the bind command.

If bindings have been created for a pad window using the Tk bind command, then they are invoked in
addition to bindings created for the pad's items using the bind widget command. The bindings for items
will be invoked before any of the bindings for the window as a whole.

The Pad++ bind command is extended in three ways:
• Extra macro expansions are added

• New events are added: <Create>, <Modify>, <Delete>, <Write>, and <PortalIntercept>.

• User-specified modifiers are added

Extra macro expansions
When a command is invoked, several substitutions are made in the text of the command that
describe the specific event that invoked the command. In addition to the substitutions that the Tk
bind command makes, Pad++ makes a few more. As with the Tk bind command, all substitutions
are made on two character sequences that start with '%'. The special Pad++ substitutions are:

%P: The pad widget that received the event. This is normally the same as %W, but could be
different if the event goes through a portal onto a different pad widget.

Page 24

• %O: The id of the specific item that received the event.

• %I: Information about this event. This has different meanings for different event types. For
<Modify> events, it specifies the command that caused the modification. For
<PortalIntercept> events, it specifies the name of the event type generating the
PortalIntercept. Standard Tcl event names, such as ButtonPress or ButtonRelease are used. This
can be used by PortalIntercept events to only let certain event types go through the portal. Note
that only a single PortalIntercept event is generated for a Button, Motion, ButtonRelease
sequence, so these three events can not be distinguished in this manner.

• %i: The X-coordinate of the event on the Pad++ surface. This is specified in the current units (i.e.,
pixels or inches) of the pad widget.

• %j: The Y-coordinate of the event on the Pad++ surface. This is specified in the current units
(i.e., pixels or inches) of the pad widget.

• %z: Size of event in pad coordinates. This is dependent on the view. It effectively says how
much the event is magnified. I.e., if the view is zoomed in by a factor of two, then this will have
a value of two. It is also affected by portals that the event travels through.

• %U: The X-coordinate of the event in object coordinates. This means that the point will be
transformed so that it is in the same coordinate system of the object (independent of the object’s
transformation as well as the current view). This is specified in the current units (i.e., pixels or
inches) of the pad widget.

• %V: The Y-coordinate of the event in object coordinates. This means that the point will be
transformed so that it is in the same coordinate system of the object (independent of the object’s
transformation as well as the current view). This is specified in the current units (i.e., pixels or
inches) of the pad widget.

• %Z: Size of event in object coordinates. This is dependent on the view and the magnifications of
the object.

• %l: The list of portal ids that the event passed through.

• %L: The list of pad surfaces of the portals the event passed through. This list corresponds to the
list of portal ids from '%l'.

New Events
Several new events fire at special times, depending on the semantics of the event.

<create>: This event gets fired whenever new pad items are created. Because items that this is
attached to don’t have id’s yet, it only makes sense to attach this event to a tag. Then this event
gets fired immediately after any item of the relevant tag is created. Example:

.pad bind foo <Create> {puts "A foo was created, id=%O"}

.pad create rectangle 0 0 50 50 -tags "foo"
=> A foo was created, id=5

<Modify>: This event gets fired whenever an item is modified. Modification occurs whenever
an item’s configuration options are changed, and whenever the following commands are executed
on an item: coords, itemconfigure, scale, slide, text, and moveto (on a portal)
The %I macro specifies the command that caused the modification. Example:

.pad bind foo <Modify> {puts "A foo was modified, cmd=%I"}

.pad create rectangle 0 0 50 50 -tags "foo"

Page 25

.pad itemconfigure foo -pen red
=> A foo was modified, cmd=itemconfigure

<Delete>: This event gets whenever an item is deleted. It is typically used to clean up
application resources associated with the item that was deleted.

<Write>: This event fires whenever an item is written out with the pad write command. While
Pad++ knows how to generate the Tcl code necessary to recreate itself, items are often part of an
application with associated data structures, etc. When an item is written out, it is frequently
necessary to write out these associated structures. Sometimes, the application may prefer to
substitute its code for pad’s. This event provides a mechanism to augment or replace (possibly with
an empty string) the Tcl code written out to recreate a pad item.

Whatever string a <Write> event returns is appended on to the string pad uses to write out that
object. In addition, the application may modify the special global Tcl variable, Pad_Write which
controls whether the item will get written out. This defaults to 1 (true), but may be set to 0 (false)
by the event binding. In addition, the <Write> event gets fired on the special tags "preWrite"
and "postWrite" at the beginning and end of the file, respectively, to allow an application to
write out code at the ends of the file. Example:

.pad bind preWrite <Write> {
return "Stuff at the beginning of the file"

}
.pad bind postWrite <Write> {

return "Stuff at the end of the file"
}
.pad bind foo <Write> {

return "Stuff after foo objects"
}
.pad bind bar <Write> {

set Pad_Write 0
return "Stuff instead of bar objects"

}
This forces all objects with the "cat" tag
to have nothing written out. Notice that an
empty string must be returned, or "0", the
result of the set command, will be written out.

.pad bind cat <Write> {
set Pad_Write 0
return ""

}
This example also has nothing written out,
but in addition, no other event handlers
will fire (the object could have multiple
tags, each with <Write> event handlers).

.pad bind dog <Write> {
Set Pad_Write 0
break

}

<PortalIntercept>: This event gets fired just before an event passes through a portal. If the
event handler executes the break command, then the event stops at the portal and does not pass
through. Example:

Page 26

Events will not go through portals of type "foo"
.pad bind foo <PortalIntercept> {

break
}

User-specified modifiers
Event handlers are defined by sequences as defined in the Tk bind reference pages. A sequence
contains a list of modifiers which are direct mappings to hardware such as the shift key, control
key, etc. Event handlers fire only for sequences with modifiers that are active, as defined by the
hardware.

Pad++ allows user-defined modifiers where the user can control which one of the user-defined
modifiers is active (if any). The advantage of modifiers is that many different sets of event bindings
may be declared all at once - each with a different user-defined modifier. Then, the application
may choose which set of event bindings is active by setting the active user-defined modifier. This
situation comes up frequently with many graphical programs where there are modes, and the effect
of interacting with the system depends on the current mode.

New modifiers must be declared before they can be used with the pad addmodifier command
(and may be deleted if they are no longer needed with the pad deletemodifier command.)
Then, the modifier can be used in the pad bind command just like a system defined modifier.
There may be at most one active user-defined modifier per pad widget. The active user-defined
modifier is set with the setmodifier command (and may be retrieved with the getmodifier
command). The current modifier may be set to "" (the default) in which case no user-defined
modifier is set. Example:

.pad addmodifier Create

.pad addmodifier Run

.pad bind all <Create-ButtonPress-1> {
Do stuff to create new objects

}
.pad bind all <Run-ButtonPress-1> {

Do stuff to interact with existing objects
}

Now the system will be in "Create" mode
.pad setmodifier Create
...

Now the system will be in "Run" mode
.pad setmodifier Run

[12] pathName bindtags tagOrId [type]

If type is specified, this command changes the ordering of event firings on all objects referred to by
tagOrId. Since more than one event handler may fire for a given event, this controls what order they fire
in. If type is "general", events fire most generally first. That is, a binding associated with the all tag is
invoked first, followed by one binding for each of the item's tags (in order), followed by a binding
associated with the item's id. (i.e., all, tags, id). If type is "specific", then events fire most specific first.
That is, a binding associated with the item’s id is invoked first, followed by one binding for each of the
item's tags (in order), followed by a binding associated with the all tag (i.e., id, tags, all).

If tagOrId is pathName, then it does not change the ordering of any objects, but controls the default
ordering of objects created in the future.

The default event firing order for all objects is "general". This command returns the current event firing

Page 27

order for the first item specified by tagOrId.

[13] pathName border subcommand arg ...

This is the command for manipulating borders. There are several subcommands:

border alloc <bordercolor>
Allocates a border for future use by render callbacks. A border is a fake 3D border created by a
slightly lighter and a slightly darker color than specified. Color may have any of the forms
accepted by Tk_GetColor. This returns a bordertoken. (Also see the render command for an
example of how to use a border).

border free <bordertoken>
Frees the border previously allocated by allocborder.

[14] pathName cache subcommand arg ...

cache in tagOrId
Forces the items specified by tagOrId to be cached in

cache out tagOrId
Forces the items specified by tagOrId to be cached out

cache configure [option [value] ...]
Configures the state of the cache manager. Option-value pairs may be specified as with the
itemconfigure command, or if no options are specified, a list of all options and values are returned.

-dir dir
Specifies the directory to use for the cache. The actual directory will be <dir>/<pid> where
pid is the process id of Pad++. It will be removed when the process exits. The cache should
be on a local disk for reasonable I/O performance. It is not set by default and caching is
disabled until the cache dir is explicitly set by the application.

-size size
Size is the total memory available to the cache manager before it starts to cache out objects. It
defaults to two megabytes. Caching can be disabled by setting size to zero.

-viewmultiple viewmultiple
Viewmultiple specifies a multiple of the view area the cache manager should use when
deciding object visibility for purposes of caching. Its default value is 2 (so objects visible
within twice the view are not cache out candidates). Setting it to 1 will cause images to be
potentially get cached out when not in the view.

-delay delay
Delay specifies the interval (in seconds) the cache manager should check and perform any
actual cache outs. Its default value is 5 seconds. Setting it to 0 will cause immediate cache
outs.

The following criteria are used for caching:

• When an object has to be rendered, the cache manager is requested to cache it in if necessary
(ensures its data are in memory). Other objects may be cached out to make room for this object.

• When an object doesn't need to be rendered the cache manager marks it as a cache out candidate.

Page 28

Cache out candidates are selected by a least-recently-rendered policy. The cache manager only selects
objects that have been marked for cache out and does not attempt to select objects currently rendered (or
visible within its multiple of the view area).

[15] pathName center [-twostep] tagOrId [time x y [z [portalID ...]]]]

Change the view so as to center the first of the specified items so the largest dimension of its bounding
box fills the specified amount of screen (z). If -twostep is specified, then make the animation in two steps
if appropriate (i.e., points not too close). The two steps are such that it zooms out to the midpoint
between the two points far enough so that both start and endpoints are visible, and then zooms to the
final destination. If time is specified, then make a smooth animation to the item in time milliseconds. The
view is changed so that the item appears at the position determined by (x, y), both of which are in the
range (0.0 ... 1.0). Here, 0.0 represents the left or bottom side of the window, and 1.0 represents the right
or top side of the window. (x, y) specifies the portion of the item that should appear at the portion of the
screen, relatively. So, specifying (0, 0) puts the lower left corner of the item on the lower left corner of
the screen. (1, 1) puts the upper right corner of the item on the upper right corner of the screen. x and y
default to (0.5, 0.5), i.e. the center of the screen. If a list of portalID's is specified, change the view
within the last one specified.

.pad center 23

[16] pathName centerbbox [-twostep] x1 y1 x2 y2 [time [x y [z [portalID

id: 22 id:23

Page 29

...]]]]

Change the view so as to center the specified bounding box so that its largest dimension fills the
specified amount of screen (z). If -twostep is specified, then make animation in two steps if appropriate
(i.e., points not too close). The two steps are such that it zooms out to the midpoint between the two
points far enough so that both start and endpoints are visible, and then zooms to the final destination. If
time is specified, then make a smooth animation to the item in time milliseconds. The view is changed so
that the bounding box appears at the position determined by (x, y), both of which are in the range (0.0 ...
1.0). Here, 0.0 represents the left or bottom side of the window, and 1.0 represents the right or top side of
the window. (x, y) specifies the portion of the item that should appear at the portion of the screen,
relatively. So, specifying (0, 0) puts the lower left corner of the bounding box on the lower left corner of
the screen. (1, 1) puts the upper right corner of the bounding box on the upper right corner of the screen.
x and y default to (0.5, 0.5), i.e. the center of the screen. If a list of portalID's is specified, change the
view within the last one specified.

[17] pathName clock [clockName [reset | delete]]

Creates a clock that is set to 0 at the time of creation. Returns the name of the clock. Future calls with
clockName return the number of milliseconds since the clock was created (or reset). Calls with reset
specified reset the clock counter to 0, and return an empty string. Calls with delete specified delete the
clock, and return an empty string.

.pad clock
clock1
.pad clock clock1
8125
.pad clock clock1 reset
.pad clock clock1
1825
.pad clock clock1 delete

[18] pathName color subcommand arg ...

This is the command for manipulating color. There are several subcommands:

color alloc <file>
Allocates a color for future use by render callbacks. Color may have any of the forms accepted by
Tk_GetColor. This returns a colortoken. (Also see the render command).

color free <colortoken>
Frees the color previously allocated by alloccolor.

[19] pathName configure [option] [value] [option value ...]

Query or modify the configuration options of the widget. If no option is specified, returns a list
describing all of the available options for pathName (see Tk_ConfigureInfo for information on the
format of this list). If option is specified with no value, then the command returns a list describing the
one named option (this list will be identical to the corresponding sublist of the value returned if no option
is specified). If one or more option-value pairs are specified, then the command modifies the given
widget option(s) to have the given value(s); in this case the command returns an empty string. Option
may have any of the values accepted by the pad command. See the section on WIDGET-SPECIFIC
OPTIONS for a description of all the options and their descriptions.

[20] pathName coords [-objectcoords] [-append] [-nooutput] tagOrId [x0 y0

Page 30

...]

Query or modify the coordinates that define an item. This command returns a list whose elements are the
coordinates of the item named by tagOrId. If coordinates are specified, then they replace the current
coordinates for the named item. If tagOrId refers to multiple items, then the first one in the display list is
used. The flags may be specified in any order. Note that the coords command generates a <Modify>
event on the items modified by it (see the bind command for a description of the <Modify> event).
Locked items may not be modified by the coords command (see the -lock itemconfigure option). The
coords command can only be used on line, rectangle, polygon and portal items.

If the flag -objectcoords is specified, then all coordinates are returned in the item's local coordinate
system (i.e., as they were originally specified). If this flag is not specified, then all coordinates are
returned in the global coordinate system (i.e., they are transformed by that item's translation and scale
parameters).

If the flag -append is specified, then all the specified coordinates are appended on to the existing
coordinates rather than replacing them.

If the flag -nooutput is specified, then this command returns an empty string. Typically, the -append and -
nooutput flags are specified together when adding points to an item and time is of the essence.

 set id [.pad create line -200 200]

 for {set i -20} {$i <= 20} {incr i} {
 set x [expr $i * 10]
 set y [expr 0.5 * ($i * $i)]
 .pad coords -append -nooutput $id $x $y
 }

[21] pathName create type [option value ...]

Create a new item in pathName of type type. The exact format of the arguments after type depends on
type, but usually they consist of the coordinates for one or more points, followed by specifications for
zero or more item options. See the Overview of Item Types section below for details on the syntax of
this command. This command returns the id for the new item.

The available item types are: Alias Items, Button Items, Frame Items, Grid Items, Group Items,
HTML Items, Image Items, KPL Items, Label Items, Line Items, Menu Items, Pad Items, Panel

Page 31

Items, Polygon Items, Portal Items, Rectangle Items, Scrollbar Items, Spline Items, TCL Items,
Text Items, Text items have default event bindings which can be used for emacs-style editing of
them. See the section on Default Bindings for more info., Note that when the -width or -height of a
textfile item is set, the textfile item is clipped to those dimensions rather than being squashed or
stretched as most items are., and Textfield Items.

[22] pathName damage [tagOrId]

Indicates that some of the screen is damaged (needs to be redrawn). Damages the entire screen if tagOrId
is not specified, or just the bounding box of each of the objects specified by tagOrId. The damage will be
repaired as soon as the system is idle, or when the update procedure is called. Returns an empty string.

[23] pathName delete tagOrId [tagOrId ...]

Delete each of the items given by each tagOrId, and return an empty string. Note that the delete
command generates a <Delete> event on the items modified by it (see the delete command for a
description of the <Delete> event). Locked items may not be modified by the delete command (see
the -lock itemconfigure option).

[24] pathName deletemodifier modifier

WARNING: deletemodifier is an obsolete command and will be removed in the next release.
Replace all uses of deletemodifier with the ’modifier delete’ command.

[25] pathName deletetag tagToDelete tagOrId [tagOrId ...]
dtag is an alias for deletetag

For each item specified by the list of tagOrIds, delete tagToDelete from the list of tags associated with
the item if it isn't already present on that list. It is possible that no items will be specified by tagOrId, in
which case the command has no effect.

This command is designed to be used in conjunction with the find command. Notice the necessity of
using eval in this example: eval .pad deletetag foo [.pad find withtag bar]

[26] pathName drawborder border type width x1 y1 x2 y2

WARNING: drawborder is an obsolete command and will be removed in the next release. Replace
all uses of drawborderwith the ’render draw border’ command.

[27] pathName drawimage imagetoken x y

WARNING: drawimage is an obsolete command and will be removed in the next release. Replace all
uses of drawimage with the ’render draw image’ command.

[28] pathName drawline x1 y1 x2 y2 [xn yn ...]

WARNING: drawline is an obsolete command and will be removed in the next release. Replace all
uses of drawline with the ’render draw line ’ command.

[29] pathName drawpolygon x1 y1 x2 y2 [xn yn ...]

WARNING: drawpolygon is an obsolete command and will be removed in the next release. Replace
all uses of drawpolygon with the ’render draw polygon’ command.

Page 32

[30] pathName drawtext string xloc yloc

WARNING: drawtext is an obsolete command and will be removed in the next release. Replace all
uses of drawtext with the ’render draw text’ command.

[31] pathName find [-groupmembers] [-regexp | -glob] searchCommand \
[arg arg ...] ["&&" | "||"] [searchCommand [arg arg ...]]

This command returns a list consisting of all of the items that meet the constraints specified by the
searchCommands and arg's. All found items are returned in display list order. Multiple
searchCommands may be used as long as they are delimited by "&&" or "||". Parenthesis are allowed to
group expressions. The following characters are reserved: '&', '|', '(', ')', and '!'. To search for these
symbols, they must be escaped. The escaping of reserved characters requires two backslashes, i.e. "\\".

If -groupmembers is specified, then group members to also be returned, otherwise, they are not.

If -regexp is specified, this causes all of the strings in ensuing searchCommands to be treated as regular
expressions.

If -glob is specified, this causes all of the strings in ensuing searchCommands to be treated as glob-style
expressions. This means that the special character ’*’ will be expanded to mean any number of any kind
of character. I.e., ’foo*’ means all the strings starting with ’foo’.

The find command does not return the pad surface (id #1). All digits are treated as item ids, i.e.
".pad find -regexp withtag 5*" will look for the object with an id of 5.

The fastest find possible is a withtag searchCommand without a regular or glob-style expression. The
slowest finds occur when regular or glob-styles expression are used on string arguments. In this case, for
every item on the surface, the regular or glob-styles expression is compared to the particular attribute of
each object.

SearchCommand may take any of these forms:

all
Returns all the items on the pad.

above tagOrId:
Returns the items above (after) the one given by tagOrId in the display list. If tagOrId denotes
more than one item, then the lowest (first) of these items in the display list is used to search
above. If the search type is a regular expression or glob-style search which denotes more than
one item, then the first tag will be used, based on alphabetical order, and then the highest (last)
of these items is used to search above.

below tagOrId
Returns the item just before (below) the one given by tagOrId in the display list. If tagOrId
denotes more than one item, then the first (lowest) of these items in the display list is used.

closest x y [halo]
Returns the items closest to the point given by x and y. If halo is specified, then any items
closer than halo to the point will be returned. Halo must be a non-negative number. If halo is
not specified, then only items overlapping the point (x, y) will be returned.

withinfo info

Page 33

If a regular expression or glob-style search is used, this returns all the items for which their
info itemconfigure option matches the pattern info. If an exact search is used, this returns all
the items for which their info itemconfigure option is the same as the string info.

withlayer layer
If a regular expression or glob-style search is used, this returns all the items for which the
name of their layer matches the pattern layer. If an exact search is used, this returns all the
items in which the name of their layer is the same as the string layer.

withname name
If a regular expression or glob-style search is used, this returns all the items for which their
name matches the pattern name. If an exact search is used, this returns all the items for which
their name is equal to the string name. A name is a URL for an HTML item, and a filename
for textfile and image items.

withsticky type
Returns all the items that are sticky type.

withtag tagOrId
If tagOrId is a number, this returns that item. If a regular expression or glob-style search is
used, this returns all the items for which their tag matches the pattern tagOrId. If an exact
search is used, this returns all the items for which their tag is equal to the string tagOrId.

withtext text
If a regular expression or glob-style search is used, this returns all the items for which their
text matches the pattern text. If an exact search is used, this returns all the items for which
their text is equal to the string text.

withtype type
If a regular expression or glob-style search is used, this returns all the items for which their
type matches the pattern type. If an exact search is used, this returns all the items for which
their type is equal to the string type.

enclosed x1 y1 x2 y2
Returns all the items completely enclosed within the rectangular region given by x1, y1, x2,
and y2. x1 must be no greater then x2 and y1 must be no greater than y2.

overlapping x1 y1 x2 y2
Returns all the items that overlap or are enclosed within the rectangular region given by x1, y1,
x2, and y2. x1 must be no greater then x2 and y1 must be no greater than y2.

52

72

92

112

Page 34

.pad find withtag selected
52 72 92

.pad find withtag selected && !withtype rectangle
52 72

[32] pathName focus [tagOrId [portalID ...]]

Set the keyboard focus for the Pad++ widget to the item given by tagOrId. If a list of portalID's are
specified, then the item sits on the surface looked onto by the last portal. If tagOrId refers to several
items, then the focus is set to the first such item in the display list. If tagOrId doesn't refer to any items
then the focus isn't changed. If tagOrId is an empty string, then the focus item is reset so that no item has
the focus. If tagOrId is not specified then the command returns the id for the item that currently has the
focus, or an empty string if no item has the focus. If the item sits on a different surface than pathName,
then this command also returns the pathName of the item.

Once the focus has been set to an item, all keyboard events will be directed to that item. The focus item
within a Pad++ widget and the focus window on the screen (set with the Tk focus command) are totally
independent: a given item doesn't actually have the input focus unless (a) its pad is the focus window and
(b) the item is the focus item within the pad. In most cases it is advisable to follow the focus widget
command with the focus command to set the focus window to the pad (if it wasn't there already). Note
that there is no restriction on the type of item that can receive the Pad++ focus.

[33] pathName font subcommand [args ...]

This command is used for manipulating fonts. Fonts are specified using a logical
font naming scheme similar to Java's, rather than using a platform-specific filename as a font name.
Font names follow the format "<facename>-<stylename>-<size>", where <facename> is the typeface,
e.g. Times, Helvetica, etc. <stylename> is "plain", "bold", "italic", or "bolditalic". <size> is the height of
the font in pixels. <style> is optional (default is "plain"). <size> is also optional (default is 12). Fonts are
substituted when the original cannot be located. Fonts specified using the old scheme are automatically
translated to this scheme. The special font name "Line" specifies to use the Pad++ built-in line font.
This font is ugly, but is faster than the regular fonts. Some Example font names are: "Times",
"Helvetica", "Times-12", "Helvetica-bold", "Times-bold-18". The font subcommands are:

font bbox string font [fontheight]
Returns a list with four elements giving the bounding box of string if it is drawn with the render
draw text command. The list has the form "x1 y1 x2 y2" such that the text is within the region
bounded by x1 on the left, x2 on the right, y1 on the bottom, and y2 on the top. The bounding box is
affected by the render configure -font and -fontheight commands.

font path [[+]path]
Pad++ uses a search path to locate font files. Set or get the global font path used in Pad++. path is
a list of directory names, separated by spaces. Font files in these directories are expected to have
the extension ".pfa". The default path is /usr/lib/X11/fonts/Type1

If the ’+’ character is included, then the specified path is appended on to the existing search path.
Otherwise, it replaces the path.

font loadbitmaps font
Attempts to load a set of X Bitmaps for font, which are used for drawing text at small sizes. e.g.
".pad loadbitmaps Helvetica-Bold".

Page 35

font maxbitmapsize size
Specifies the maximum size for which X font bitmaps should be loaded when the ’font
loadbitmaps’ command is executed. This can be useful when making presentations if you want to
force large fonts to be loaded.

font names
Returns the names of all the font faces/styles available on the current system as a list.

[34] pathName freeborder border

WARNING: freeborder is an obsolete command and will be removed in the next release. Replace
all uses of freeborder with the ’border free’ command.

[35] pathName freecolor color

WARNING: freecolor is an obsolete command and will be removed in the next release. Replace all
uses of freecolor with the ’color free’ command.

[36] pathName freeimage imagetoken

WARNING: freeimage is an obsolete command and will be removed in the next release. Replace all
uses of freeimage with the ’image free’ command.

[37] pathName getdate

Returns the current date and time in the standard unix time format.

% .pad getdate
Wed May 29 20:01:49 1996

[38] pathName getgroup tagOrId

Return the group id that tagOrId is a member of. If tagOrId is not a member of a group, then this
command returns an empty string. If tagOrId specifies more than one object, then this command refers
to the first item specified by tagOrId in display-list order. (Also see the addgroupmember, and
removegroupmember commands).

[39] pathName getlevel

WARNING: getlevel is an obsolete command and will be removed in the next release. Replace all
uses of getlevel with the ’render configure -level’ command.

[40] pathName getmag tagOrId

WARNING: getmag is an obsolete command and will be removed in the next release. Replace all
uses of getmag drawtext with the ’render configure -mag’ command.

[41] pathName getmodifier

WARNING: getmodifier is an obsolete command and will be removed in the next release. Replace
all uses of getmodifier with the ’modifier get’ command.

[42] pathName getpads

Page 36

Returns a list of all the Pad++ widgets currently defined.

[43] pathName getportals

WARNING: getportals is an obsolete command and will be removed in the next release. Replace
all uses of getportals with the ’render configure -portals’ command.

[44] pathName getsize tagOrId ?portalID ...?

Returns the largest dimension of the first item specified by tagOrId. If a portal list is specified, then the
size of the item within the last portal is returned.

[45] pathName gettags tagOrId

Return a list whose elements are the tags associated with the item given by tagOrId. If tagOrId refers to
more than one item, then the tags are returned from the first such item in the display list. If tagOrId
doesn't refer to any items, or if the item contains no tags, then an empty string is returned.

[46] pathName gettextbbox string

WARNING: freeborder is an obsolete command and will be removed in the next release. Replace
all uses of freeborder with the ’border free’ command.

[47] pathName getview [portalID ...]

Returns the current view of the main window in "xview yview zoom" form. Here, (xview, yview) specifies
the point at the center of the window, and zoom specifies the magnification. If a list of portalID's is
specified, than the view of the last portal is returned instead of the view of the main window. (See
moveto to set the current view).

.pad getview
14 134 2
.pad ic 221 -position
8 118 1

Page 37

.pad moveto -250 -150 0.5

.pad getview
-250 -150 0.5
.pad ic 221 -position
8.1125 118.753 1

[48] pathName getzoom [portalID ...]

Returns the current magnification of the main window. If a list of portalID's is specified, than the view
of the last portal is returned instead of the view of the main window. This is a shortcut for the last
parameter returned by the getview command. (See moveto to set the current view).

.(14.016 134.852 1.97919)

group id = 221

 View

.(-250,-150 0.5)

group id = 221

 view

Page 38

[49] pathName grab [-root | -path pathName | -win winId] \
[-dim {width height}] x y width height

This captures a rectangular portion of the screen and makes an imagedata which can then be used to
create image items (Also see image [53] command and Image Items.) The grab command takes a
region (x, y, width, height) which specifies the area to grab. Note that y represents the top of the region.
The region can be relative to a specific Tk window, any other X window, or the entire screen. By
default, the region is relative to the pad widget window. The region actually grabbed is clipped to the
specified window (or to the screen for root grabbing.)

The window the region is relative to can be specified with the -root, -path, or -win flags. -path is used to
specify an existing Tk window. -root is used to specify that the region is relative to screen. -win is used
to specify any X window by the window id. X window id’s can get accessed from the xlswins program
that comes with most X systems. If a dimension is specified, then the image is shrunk through simple
decimation to produce the desired resolution before it is returned. Images can only be shrunk, not grown
with the dimension flag. Note that images can be distorted by setting a dimension with a different aspect
ratio than the source.

X displays support multiple display characteristics called visuals (8-bit pseudocolor, 24-bit truecolor,
etc.). Windows on the same screen can use different visuals. Because of this, grabbing from the root can
grab from different windows. If the windows have a different visual than the root, those colors of those
windows will be undefined.

Grab returns an imagedata token that could be used to create an image:
set imagedata [.pad grab 0 0 200 200]
.pad create image -image $imagedata

[50] pathName grid option arg [arg ...]

The grid command arranges one or more objects in rows and columns and treats them as a group. It is
based on the Tk grid geometry manager and its behavior and Tcl syntax are very similar to it. In pad, all
grid commands are sub-commands of the pad command. See the section on GRID ITEMS for a
complete description of this command, and how to create and use grids.

[51] pathName hastag tag tagOrId

Determines if the item specified by tagOrId contains the specified tag. This command returns "1" if the
item does contains the specified tag, or "0" otherwise. If tagOrId refers to more than one item, then the
comparison is performed on the first item in the display list. If tagOrId doesn't refer to any items, then
"0" is returned.

[52] pathName html subcommand arg ...

This is the command for manipulating html pages and html anchors. There are several subcommands:

html configure tagOrId [option [value] ...]
Configures the specified html page. Option-value pairs may be specified as with the itemconfigure
command, or if no options are specified, a list of all options and values are returned.

-source (read only)
Returns the HTML source of the page

-type (read only)

Page 39

Returns the mime type of the page contents

-lastchangedate (read only)
Returns the last time the html source was modified, as specified by the server.

-length (read only)
Returns the length of the html source in characters.

html anchor configure tagOrId [option [value] ...]
Configures the specified html anchor. Option-value pairs may be specified as with the
itemconfigure command, or if no options are specified, a list of all options and values are returned.

-html (read only)
Returns the id of the html page this anchor is associated with.

-image (read only)
Returns the image token this anchor is represented by if the anchor is an image anchor.

-ismap (read only)
Returns true if the anchor is an imagemap.

-name (read only)
Returns the name of the anchor

-state
Returns the current state of the anchor (unvisited, visited, or active).

-url (read only)
The URL this anchor is linked to.

[53] pathName image subcommand arg ...

This is the command for manipulating image data. In Pad++, the data associated with an image is
manipulated separately from an image item. With this approach, the multiple Pad++ image items can
use the same image data. There are several subcommands:

image alloc <file>
Allocates an image data for future use by image items and render callbacks. file specifies the name
of a file containing an image. image alloc can always read gif file formats. In addition, if
Pad++ is compiled with the appropriate libraries, it can also read jpeg and tiff image file formats,
and will automatically determine the file type. The image may have transparent pixels. This returns
an image token which can be used by related commands.

image free <imagetoken>
Frees the image data previously allocated by image alloc.

image names
Returns a list of all allocated image data tokens.

image configure <imagetoken> [option [value] ...]
Configures the specified image data. Option-value pairs may be specified as with the
itemconfigure command, or if no options are specified, a list of all options and values are returned.

-dimensions (read only)
Returns a list of the dimensions of the image data (width, height).

Page 40

-name (read only)
Returns the file the image data token was created from.

-rgb (can set only to 0)
Normally, image data are stored internally with their full rgb colors in addition to a colormap
index. This allows images to be rendered with dithering, but takes 5 bytes per pixel. If the -
norgb option is specified, then the original rgb information is not stored with the image and
the image can not be rendered with dithering, but only takes 1 byte per pixel.

For example, the following code creates two image items that use the same image data:
set imagedata [.pad image alloc "foo.gif"]
.pad create image -image $imagedata -anchorpt "0 0"
.pad create image -image $imagedata -anchorpt "200 0"

[54] pathName info subcommand

A command for accessing information about the pad. subcommand may be any of the following: status.
Each subcommand may have sub-subcommands and options. All the subcommands and their options
follow:

status render
This returns a debugging line specifying some information relevant to the last render. It
returns the number of objects on the surface, the number ob objects rendered in the last
render, the render level, and the time in milliseconds the last render took.

status sharedmemory
When Pad++ is running on X, it uses X shared memory to render images quickly. This
return true if Pad++ is using X shared memory.

[55] pathName isvisible tagOrId [portalId ...]

Returns true if the first item specified by tagOrId is visible. If any portals are specified, then this returns
true if the item is visible within the last portal on the list.

[56] pathName itemconfigure [-nondefaults] tagOrId [option [value] ...]
ic is an alias for itemconfigure

A command for accessing information about the pad. subcommand may be any of the following: status.
pathName itemconfigure [-nondefaults] tagOrId [option [value] ...]

This command is similar to the configure command except that it modifies item-specific options for
the items given by tagOrId instead of modifying options for the overall pad widget. If no option is
specified, then this command returns a list describing all of the available options for the first item given
by tagOrId. If the -nondefaults flag is specified, then only those options modified by an application will
be returned. If option is specified with no value, then the command returns the value of that option. If
one or more option-value pairs are specified, then the command modifies the given widget option(s) to
have the given value(s) in each of the items given by tagOrId; in this case the command returns an empty
string. If value is an empty string, then that option is set back to its default value.

The options and values are the same as those permissible in the create command when the item(s)
were created; see the sections below starting with OVERVIEW OF ITEM TYPES for details on the legal
options. Note that the itemconfigure command generates a <Modify> event on the items modified
by it (see the itemconfigure command for a description of the <Modify> event). Locked items
may not be modified by the itemconfigure command (see the -lock itemconfigure option).

[57] pathName layer subcommand [args ...]

Page 41

This command controls creation and deletion of layers, and provides a method to return the current
layers. Layers are used to control rendering order, and visibility. Every item sits on a single layer. Each
surface can have any number of layers, and the layers are rendered in sequence. In addition, each view
can specify which layers can be seen within that view (via the -visiblelayers [67] itemconfigure
option.)

While layers are implicitly defined when they are used, this command allows the creation of a layer
before it is used, and thus ordering of layers can be defined before objects are created. There are several
subcommands:

layer create <layer>
Creates a new layer, and gives it the name layer. There are no items on a new layer, and the layer is
put on top of all existing layers.

layer delete <layer>
Deletes the specified layer. If any items are on a layer when it is deleted, then all of those items are
deleted as well.

layer names
Returns a list of all the current layer names.

[58] pathName layout subcommand [args ...]

This command performs various kinds of one-time layouts. That is, it repositions and resizes objects
based on subcommands, but does not manage the objects in the future. Attaching a layout call to a
<Modify> event provides a way to define custom layout managers. The subcommands are:

layout align <type> [-anchor] [-coords {x y ...} [-overlaponly]] \
 tagOrId [tagOrId ...]
<type> can be -left, -right, -top, or -bottom

Align the specified items so that their bounding boxes line up on the specified side. If -anchor is
specified, then line up by anchor point instead of by bounding box. If coordinates are specified with
-coords, then align items to the path specified by those coordinates. Otherwise, use the item
furthest in the alignment direction to align the others to. If -coords is specified, then -overlaponly
may be specified which means that items should only be aligned if they overlap the specified path.
In all cases, items are aligned so the furthermost object doesn’t move. That is, if you are aligning to
the left, then all objects are moved to be aligned with the left-most object.

A simple example moves all the items that have the tag "foo" so they are aligned on top:

.pad layout align -top foo

layout distribute <type> [-space space] tagOrId [tagOrId ...]
<type> must be "-horizontal", "-vertical", or "-coords {x1 y1 x2 y2 ...}"

Distribute the specified items so that the space between them is equalized horizontally or vertically
(by bounding box). Alternatively, -coords can be specified in which case the items will be
distributed along the path specified by the coordinates with equal spacing between items. -space
can be specified in which case the items will be distributed so there is space between each item. If -
space and -coords are specified, then the items will be distributed along with the path specified by
the coordinates with space between each item. If the items take up more space than is available on
the specified path, they will continue along an extension of the last portion of the path.

Page 42

layout position [-time animationTime] x1 y1 <type> x2 y2 tagOrId \

 [tagOrId ...]
<type> must be "-ref tagOrId" or "-bbox {bbx1 bby1 bbx2 bby2}"

Position the specified objects relative to a target object, or a bounding box. Specify target point by a
point on the unit square, and specify the source point by a point on the unit square. If
animationTime is specified, then the objects are animated to their new position in the specified time
(in milliseconds).

The following code moves all the objects with the tag "foo" so they have the same lower left
corner as item #72. Then, all the objects with the tag "bar" are moved so that their upper right
corner is at the same position as the lower left corner of item #72.

.pad layout position 0 0 72 0 0 foo

.pad layout position 0 0 72 11 bar

layout size <type> [-ref tagOrId] [-scale scale] tagOrId [tagOrId ...]
<type> must be "-width", "-height"

Scale the specified objects so that their bounding boxes are scaled (width or height) to the target. If
a reference object is specified, then scale relative to that object. Otherwise, scale to an absolute
dimension. Objects are scaled around their anchor points.

layout snap grid tagOrId [tagOrId ...]
Position the objects so that their anchor points are snapped to grid.

[59] pathName line2spline error x1 y1 ... xn yn

Takes the coordinates for a line, and uses an adaptive curve fitting algorithm to generate the coordinates
for a spline that approximates the line. The spline coordinates are returned. error is a floating point
number indicating how closely the spline curve should follow the line. Using a smaller error will tend to
generate a spline made with more bezier segments that follow the line more accurately. Using a larger
error will produce fewer bezier segments but the fit will be less accurate. See the section on SPLINE
ITEMS on how splines are specified in Pad++. (Also see spline2line.)

[60] pathName lower [-one] [-layer] tagOrId [belowThis]

Move all of the items given by tagOrId to a new position in the display list just before the item given by
belowThis. If tagOrId refers to more than one item then all are moved but the relative order of the moved
items will not be changed. belowThis is a tag or id; if it refers to more than one item then the first
(bottommost) of these items in the display list is used as the destination location for the moved items. If
belowThis is not specified, then tagOrId is lowered to the bottom of the display list. If the -one flag is
specified, then tagOrId is lowered down one item in display order which may or may not have a visible
effect. -one and aboveThis may not both be specified. If any items to be lowered are group members,
they are lowered within their group rather than being lowered on the pad surface. Returns an empty
string.

If -layer is specified, then rather than lowering a set of items, it lowers the layer specified by tagOrId.
(See the layer [57] command for more information about layers.)

[61] pathName modifier subcommand [args ...]

The modifier command manipulates the user-specified modifier for event bindings. A user-specified

Page 43

modifier is a software equivalent of the Shift, Control, or other modifier keys. They can be used to
isolate event bindings that all belong to one mode. See the documentation of the bind command for a
more complete description. There are several subcommands:

modifier create <modifier>
Define modifier to be a user-defined modifier that can be used in future event bindings.

modifier delete <modifier>
Return the current active modifier.

modifier get
Delete modifier from the list of valid user-defined modifiers. Any event bindings that are defined
with this modifier become invalid.

modifier set <modifier>
Make modifier be the current active modifier for this widget. modifier must have been previously
defined with the ’modifier create’ command.

[62] pathName moveto [-twostep] xview yview zoom [time [portalID ...]]

Change the view so that the point "xview yview" is at the center of the screen with a magnification of
zoom. If xview, yview, or zoom is specified as "", then that coordinate is not changed. If -twostep is
specified, then make animation in two steps if appropriate (i.e., points not too close). The two steps are
such that it zooms out to the midpoint between the two points far enough so that both start and endpoints
are visible, and then zooms to the final destination. If time is specified, then the change in view will be
animated in enough evenly spaced frames to fill up time milliseconds. If a list of portalID's are specified,
then the view will be changed within the last specified portalID rather than within the main view. The
return value is the current view. (See getview to get the current view). Note that the moveto
command generates a <Modify> event if a portal’s view is changed (see the bind command for a
description of the <Modify> event).

[63] pathName noise index

Returns a repeatable noise value based on the floating-point value of index. This noise function is equal
to 0 whenever index is an integer. Typically, noise is called with slowly incrementing values of index.
The closer the consecutive values of index are, the higher the frequency of the resulting noise will be.
This noise function is from Ken Perlin at New York University (http://www.mrl.nyu.edu/perlin).

Example:

set coords ""
set noiseindex_x 0.1928
set noiseindex_y 100.93982
set noiseincr 0.052342
for {set i 0} {$i < 100} {incr i } {

set x [expr 500.0 * [.pad noise $noiseindex_x]]
set y [expr 500.0 * [.pad noise $noiseindex_y]]
lappend coords $x
lappend coords $y
set noiseindex_x [expr $noiseindex_x + $noiseincr]
set noiseindex_y [expr $noiseindex_y + $noiseincr]

}
eval .pad create line $coords

Page 44

[64] pathName padxy [-sticky] [-portals] winx winy [-gridspacing value]

Given a window x-coordinate winx and y-coordinate winy, this command returns the pad x-coordinate
and y-coordinate that is displayed at that location. If -sticky is specified, the coordinate transform is done
ignoring the current view (i.e., as for sticky objects.) If -portals is specified, then the point (winx, winy) is
passed through any portals it on. If -gridspacing is specified, then the pad coordinate is rounded to the
nearest multiple of value units.

[65] pathName pick [-divisible] [-indivisible] winx winy

Given a window coordinate (winx, winy), it returns the visible object underneath that point. If the point
should pass through any portals, a <PortalIntercept> event will be fired which will determine if
the event will pass through that portal. By default, the pick command uses the divisibility of individual
groups to determine if group members should be picked. However the -divisible or -
indivisible flags (only one of which may be specified) override group’s divisibility. If -divisible is
specified, then group members will be picked from any group the point hits. If -indivisible is specified,
then group objects and not group members will be picked.

% .pad create line 0 0 100 100
22
.pad create rectangle 30 30 80 80
23

.pad addmodifier Pick

.pad bind all <Pick-ButtonPress-1> {
event_Press %i %j %x %y %O

}

proc event_Press {i j x y obj} {
Get the group object not the group members
underneath the point x y

set container [.pad pick -indivisible $x $y]
puts "container $container object: $obj coords: ($i, $j)"

}

.pad setmodifier Pick

 Now, group the line and rectangle:

% .pad create group -members "22 23"
24

Page 45

 Now, click on the line, the system response with:
container 24 object: 22 coords: (37.5, 36)

 Now, click on the rectangle, system response with:
container 24 object: 23 coords: (66.5, 28)

 Now, change the pick command as:
set container [.pad pick -divisible $x $y]:

 Then click on the line:
container 22 object: 22 coords: (52.5, 52)

 Click on the rectangle:
container 23 object: 23 coords: (63.5, 30)

[66] pathName popcoordframe

Pops the top frame off the stack of coordinate frames. The resulting frame on the top of the stack
becomes active. Also see pushcoordframe and resetcoordframe. Returns the frame popped off
the stack.

[67] pathName printtree

(0,0)

(100,100)

(30,30)

(80,80)

(0,0)

(100,100)

(30,30)

(80,80)

Page 46

Prints the current hierarchical tree of items to stdout (used for debugging). Returns an empty string.

[68] pathName pushcoordframe tagOrId
pathName pushcoordframe x1 y1 x2 y2

Pushes a coordinate frame onto the stack of coordinate frames. When any coordinate frames are on the
stack, all coordinates are interpreted relative to the frame instead of as absolute coordinates. A frame is a
bounding box, and all coordinates are specified within the unit square where the unit square is mapped to
the frame.

Note that the -penwidth and -minsize and -maxsize itemconfigure options are also relative to the
coordinate frame. In these cases, a value of 1 refers to the average of the frame dimensions.

Text and images are scaled so that one line of text, or the height of the image is scaled to the height of
the coordinate frame at a scale of 1 (using the -position or -scale itemconfigure options).

For example, the following code makes 50 nested rectangles. Note that the width of the rectangles
shrinks proportionally.

for {set i 0} {$i < 50} {incr i} {
set id [.pad create rectangle 10 10 80 80 -penwidth 2]
.pad pushcoordframe $id

}
.pad resetcoordframe

 Also see popcoordframe and resetcoordframe. Returns the current coordinate frame.

[69] pathName raise [-one] [-layer] tagOrId [aboveThis]

Move all of the items given by tagOrId to a new position in the display list just after the item given by
aboveThis. If tagOrId refers to more than one item then all are moved but the relative order of the moved
items will not be changed. aboveThis is a tag or id; if it refers to more than one item then the last
(topmost) of these items in the display list is used as the destination location for the moved items. If
aboveThis is not specified, then tagOrId is raised to the top of the display list. If the -one flag is
specified, then tagOrId is raised up one item in display order which may or may not have a visible effect.
-one and aboveThis may not both be specified. If any items to be raised are group members, they are
raised within their group rather than being raised on the pad surface. Returns an empty string.

If -layer is specified, then rather than raising a set of items, it raises the layer specified by tagOrId. (See
the layer [57] command for more information about layers.)

22

23

 24

Page 47

.pad raise 24

If we use the -one option:
 .pad raise -one 24

 The original position turns to be:

[70] pathName random min max

Returns a random integer between the specified min and max points, inclusively.

[71] pathName read filename

Executes the tcl commands in the filename. If filename is created with the write command, then this
command reads the pad scene back in. Returns an empty string.

[72] pathName removegroupmember [-notransform] tagOrId

Remove all items specified by tagOrId from the group they are a member of, and return them to the pad
surface. If any of the items were members of hierarchical groups, they are removed from all groups. If
any of the items are not a member of a group, then they are not affected. Items removed are added to the
pad surface just after the group in terms of display-list order.

By default, items are transformed so they don't change their location when removed from a group - even
if the group has a transformation. This is implemented by transforming the item's transformation to be
the inverse of the group's transformation. If the -notransform flag is specified, this inverse
transformation is not applied, and the item will move by the group's transformation when removed. (Also
see the addgroupmember, and getgroup commands). Returns an empty string.

[73] pathName render subcommand arg ...

The render command is used to manipulate the state of the renderer, and to render onto the screen

Page 48

during a renderscript. This command can only be called within a render callback.

render scale dz
Magnifies all rendering performed in the current renderscript by dz.

render translate dx dy
Translates all rendering performed in the current renderscript by (dx, dy).

render draw border bordertoken relief width x1 y1 x2 y2
render draw filledborder bordertoken relief width x1 y1 x2 y2

Draws a fake 3D border connecting the specified coordinates. (See border commands). This
command can only be called within a render callback. Border must have been previously allocated
by border. Type must be one of "raised", "flat", "sunken", "groove", "ridge",
"barup", or "bardown". The ’draw border’ command draws just the border while the
’draw filledborder’ command draws the border with the inside filled with the color of the
border. The following example creates an object that draws a border:

set border [.pad allocborder #803030]
.pad create rectangle 0 0 100 100 -renderscript {
.pad render draw border $border raised 5 0 0 100 100

}

render draw image imagetoken x y
Draws the image specified by imagetoken at the point (x, y). This command can only be called
within a render callback.

render draw line x1 y1 x2 y2 [xn yn ...]

Draws a multi-segment line connecting the specified coordinates.This command can only be called
within a render callback.

render draw polygon x1 y1 x2 y2 [xn yn ...]

Draws a closed polygon connecting the specified coordinates. This command can only be called
within a render callback.

render draw text string x y
Draws the specified text at the specified location. This command can only be called within a render
callback.

render configure [option [value] ...]
Configures the state of the renderer. Option-value pairs may be specified as with the itemconfigure
command, or if no options are specified, a list of all options and values are returned.

-capstyle capstyle
Sets the capstyle of lines for drawing within render callbacks. Capstyle may be any of: "butt",
"projecting", or "round".

-joinstyle joinstyle
Sets the joinstyle of lines for drawing within render callbacks. Joinstyle may be any of:
"bevel", "miter", or "round".

-linewidth width
Sets the linewidth (in current units) to width for future drawing with render callbacks. The
actual width of the line will depend on the size of the object and the magnification of the

Page 49

view. If width is 0, then the line is always drawn 1 pixel wide.

-color color
Sets the color for future drawing with render callbacks. Color must have previously been
allocated by color alloc.

-font fontname
Sets the font for future drawing with render callbacks. This affects the result of the font
bbox command. Fontname must specify a filename which contains an Adobe Type 1 font, or
the string "Line" which causes the Pad++ line-font to be used. Defaults to "Times-12".

-fontheight height
Sets the height of the font for future drawing with render callbacks. Height is specified in the
current pad units. This affects the result of the font bbox command.

-level (read-only)
Returns the current render level. (See the sections on Refinement and Region Management
and Screen Updating in the Programmer’s Guide for more information about render levels).

-mag (read-only)
Returns the current magnification of tagOrId for this specific render (it could be rendered
multiple times if visible through different portals). Magnification is defined as the
multiplication of the current view (including portals) with the object's size (from the -position
itemconfigure option).

-portals (read-only)
Returns the list of the portals the current object is being rendered within.

[74] pathName renderitem [tagOrId]

During a render callback triggered by the -renderscript option, this function actually renders the object.
During a -renderscript callback, if renderitem is not called, then the object will not be rendered. If
tagOrId is specified, then all the items specified by tagOrId are rendered (and the current item is not
rendered unless it is in tagOrId). This function may only be called during a render callback. Returns an
empty string.

[75] pathName resetcoordframe

Pops all the frames off of the coordinate stack. Results in an empty stack, so all coordinates are back to
absolute coordinates. Also see pushcoordframe and popcoordframe. Returns an empty string.

[76] pathName rotate tagOrId angle [xctr yctr]

Rotates all the items specified by tagOrId angle degrees. If (xctr, yctr) is specified, then all the items are
rotated around the specified point. If the rotation point is not specified, then each item is rotated around
its anchor point. All item types are rotatable except html pages, and widgets (such as buttons, scrollbars,
and textfields). If a non-rotatable item is rotated, a Tcl error will be generated. (see the -angle
itemconfigure option).

[77] pathName scale tagOrId [scaleAmount [ctrx ctry [animationTime]]]

Scale each of the items given by tagOrId by multiplying the size of the item with scaleAmount. Scale the
items around the item’s center, or around the point (ctrx, ctry), if specified. This command returns the
scale of the first item. Note that the scale command generates a <Modify> event on the items

Page 50

modified by it (see the scale command for a description of the <Modify> event). Locked items may
not be modified by the scale command (see the -lock itemconfigure option).

If animationTime is specified, then all the items moved will be animated over a period of animationTime
milliseconds.

[78] pathName setcapstyle capstyle

WARNING: setcapstyle is an obsolete command and will be removed in the next release. Replace
all uses of setcapstyle with the ’render configure -capstyle’ command.

[79] pathName setcolor color

WARNING: setcolor is an obsolete command and will be removed in the next release. Replace all
uses of setcolor with the ’render configure -color’ command.

[80] pathname setfont fontname

WARNING: setfont is an obsolete command and will be removed in the next release. Replace all
uses of setfont with the ’render configure -font’ command.

[81] pathname setfontheight height

WARNING: setfontheight is an obsolete command and will be removed in the next release.
Replace all uses of setfontheight with the ’render configure -fontheight’ command.

[82] pathname setid tagorid id

Sets the id of an existing item to id. If tagorid specifies more than one item, then the first item is used.
Returns an empty string. This generates an error if an invalid id is specified (i.e., if it is in use), or if
tagorid does not specify an object.

[83] pathName setjoinstyle joinstyle

WARNING: joinstyle is an obsolete command and will be removed in the next release. Replace all
uses of joinstyle with the ’render configure -joinstyle’ command.

[84] pathName setlanguage language

Sets the language to be used for callback scripts that are created in the future. All callback scripts that
have already been created will be evaluated in the language that was active at the time they were
created. This command refers to all callback scripts including event handlers, render scripts, timer
scripts, zoom actions, etc. Pad++ always includes at least the Tcl scripting language, but others may be
active, depending on how Pad++ was built. This command controls whatever languages are currently
installed. The language defaults to "automatic" where it tries to guess the language based on the syntax
of the script. See the SCRIPTING LANGUAGES section in the Programmer’s Guide for more details.
(Also see the settoplevel command.)

[85] pathName setlinewidth width

WARNING: setlinewidth is an obsolete command and will be removed in the next release.
Replace all uses of setlinewidth with the ’render configure -linewidth’ command.

[86] pathName setmodifier modifier

Page 51

WARNING: setmodifier is an obsolete command and will be removed in the next release. Replace
all uses of setmodifier with the ’modifier set’ command.

[87] pathName settoplevel language

Sets the language that the top-level interpreter should use. Pad++ always includes at least the Tcl
scripting language, but others may be added. Returns an empty string. See the SCRIPTING
LANGUAGES section in the Programmer’s Guide for more details. (Also see the setlanguage
command.)

[88] pathName slide tagOrId [dx dy [animationTime]]

Slide each of the items given by tagOrId by adding dx and dy to the x and y coordinates of the item's
transformation (i.e., their -position itemconfigure option). This command returns a string with the (x, y)
position at the item’s anchor point. Note that the slide command generates a <Modify> event on the
items modified by it (see the slide command for a description of the <Modify> event). Locked items
may not be modified by the slide command (see the -lock itemconfigure option).

If animationTime is specified, then all the items moved will be animated over a period of animationTime
milliseconds.

.set id [.pad create line 0 0 200 200]

.pad slide $id -80 30
20.000000 70.000000

[89] pathName sound subcommand args ...

Rudimentary sound support is available for the Irix (SGI) and Linux platforms. Currently, only ".au"
sound file formats are supported. By default, Pad++ is built without sound. See the README file for
instructions on building Pad++ with sound. The following subcommands implement sound:

.pad sound load file
This command loads a sound file, and returns a sound token that can be used to play the sound later.

.pad sound play sound_token [-volume volume]
This will play a sound specified by sound_token which is a sound loaded with the "sound load"
command. This returns a token that is used to stop the sound if needed. If volume is specified (at a
range of [0-100]), then the sound is played at the given volume (temporarily overriding the system
configuration). Short sounds are played asynchronously. There are no guarantees, but in practice,
sounds under about a half second are played in the background, and this function immediately. In
the future, there will be better control over this.

-80
 30

(20, 70)
(0,0)

(200,200)

. (100,100)

Page 52

.pad sound stop play_token
This stops the sound referenced by play_token

.pad sound configure [option [value] ...]
-sounds (read-only)

This returns a list of the currently loaded sounds.

-volume master
-volume {left right}

This sets the volume of all sounds to be played. If a single parameter is given, it is treated as
the master volume, and sets the sound for both channels. If two parameters are given (as a
two-element list), they set the left and right speaker volumes separately. In all cases, this
returns a list of the left and right speaker volumes. Volumes are specified in the range [0-100].

[90] pathName spline2line error x1 y1 ... xn yn

Takes the coordinates for a spline and uses an adaptive bezier algorithm to generate the coordinates for a
line that approximates the spline. error is how much error is allowed - a small error produces a greater
number of points and more accuracy. A large error yields fewer points but the line is less accurate. See
the section on SPLINE ITEMS for details on how splines are created. (Also see line2spline.)

[91] pathName text tagOrId option [arg ...]

Allows interaction with all text item types. This includes text, textfile, textfield, and textarea items. See
TEXT ITEMS for a description of indices and marks. tagOrId specifies the text item to apply the
following command to. Option and the args determine the exact behavior of the command. Note that the
text command generates a <Modify> event on the items modified by it (see the text command for a
description of the <Modify> event). Locked items may not be modified by the text command (see
the -lock itemconfigure option). The following command options are available:

• compare index1 op index2

 Compares the indices given by index1 and index2 according to the relational operator given by op,
and returns 1 if the relationship is satisfied and 0 if it isn't. Op must be one of the operators <, <=
==, >=, >, or !=. If op is == then 1 is returned if the two indices refer to the same character, if op
is < then 1 is returned if index1 refers to an earlier character in the text than index2, and so on.

• delete index1 [index2]

 Delete a range of characters from the text. If both index1 and index2 are specified, then delete all
the characters starting with the one given by index1 and stopping just before index2 (i.e. the
character at index2 is not deleted). If index2 doesn't specify a position later in the text than index1
then no characters are deleted. If index2 isn't specified then the single character at index1 is
deleted. The command returns an empty string.

• get index1 [index2]

 Return a range of characters from the text. The return value will be all the characters in the text
starting with the one whose index is index1 and ending just before the one whose index is index2
(the character at index2 will not be returned). If index2 is omitted then the single character at
index1 is returned. If there are no characters in the specified range (e.g. index1 is past the end of
the file or index2 is less than or equal to index1) then an empty string is returned.

• index index [char]

Page 53

 Returns the position corresponding to index in the form line.char where line is the line number and
char is the character number. If char is specified, then the position is returned in the form char
which is the character index from the beginning of the file. Index may have any of the forms
described under INDICES.

• insert index chars

 Inserts chars into the text just before the character at index and returns an empty string.

• mark option [arg arg ...]

 This command is used to manipulate marks. The exact behavior of the command depends on the
option argument that follows the mark argument. The following forms of the command are
currently supported:

mark names

Returns a list whose elements are the names of all the marks that are currently set.

mark set markName index

Sets the mark named markName to a position just before the character at index. If markName
already exists, it is moved from its old position; if it doesn't exist, a new mark is created. This
command returns an empty string.

mark unset markName [markName ...]

Remove the mark corresponding to each of the markName arguments. The removed marks
will not be usable in indices and will not be returned by future calls to pathName mark
names. This command returns an empty string.

[92] pathName tree subcommand [args ...]

This command creates, maintains, and animates dynamic trees of Pad items. Items are created by other
pad functions, and are placed into hierarchical tree structures to be managed by this code. These trees
support a focus + context viewing structure, multiple foci, and a focus function which has a controlled
level of influence on the tree.

Each node has a layout object associated with it which controls the position and resizing of the pad item
at that node during a layout. Each layout controls a link item - a pad item created by the tree code, which
graphically connects the node to its parent. This link item is maintained automatically by the tree code,
but may be accessed and manipulated through the tree subcommand.

Each pad has a treeroot object, which is a list of all pad tree nodes on the surface. Each of these "root
nodes" is an invisible treenode which controls certain subtrees on the pad surface. This organization is
necessary to keep trees independent. Animation done at a node affects that node and its children, so we
need to be careful to organize the nodes in such a way that all nodes we wish to "know" about each other
are connected in some manner. Separate hierarchies can be made to "avoid" each other during animation
by connecting them together under an invisible root node. When the layout function is called on the root
node, both hierarchies will be laid out according to the layout object which resides at the root node.

A dynamic tree supports an arbitrary number of foci. Management of these foci is left up to the user. A
node's focus is spread by a function which has several parameters. See the setfocus subcommand for
more information.

Page 54

Manipulation of the tree structure falls into four parts - tree management, layout, animation control, and
parameter control.

Tree Management
A tree can be added to by creating new nodes and adding them to the existing tree structure. Nodes and
subtrees can be moved within trees. Nodes and subtrees can be deleted, which will also delete the pad
item associated with the treenode. Nodes and subtrees can be removed, which simply removes the
treenode associated with the object, but leaves the object itself alone.

Layout
The default layout provided with the current version of this code creates a hierarchical tree in which a
node's children are laid out to the right of the node. This layout prevents any overlapping of nodes by
calculating the bounding box of the subtree rooted at a node, and laying out nodes so that these bounding
boxes do not intersect.

Animation control
A tree always animates its members. It may also animate the view at the same time the members are
being animated.

Parameter control.
There are a variety of parameters associated with the layout at a node, and the control of animation of a
tree.

Trees are created and manipulated through the tree subcommands:

addnode childtagOrId parenttagOrId

Adds childtagOrId to parenttagOrId as a child. If childtagOrId already has a parent, this
command also removes childtagOrId from that parent. When it is added to the tree, the item's
current zoom is recorded, and is used in all future calculations in the dynamic tree layouts.
This means that an item's size when it is added to the tree is the size that it will have when it
has a focus of 1.0. (See the tree setscale command to modify the size of an item after it
has been added to a tree.)

animatelayout tagOrId [-view view]

Used in conjunction with computelayout, this command performs the animated layout of a
tree. It may be given a view, which forces the system to animate the system view while the
tree animation is taking place. Use getlayoutbbox to calculate a view for the finished
animation. See computelayout for specific implementation instructions.

Using animatelayout with the -view option forces an animation of the view as the tree is
animating. The view animates from the current view to the one specified as the tree animation
is taking place.

animateview tagOrId [value]

Sets the animateView flag at tagOrId. Controls whether or not a layout will animate the view
when layout is called at tagOrId.

connect tagOrId

Draws links from tagOrId to its parent, and from tagOrId's children to tagOrId.

Page 55

computelayout tagOrId

Computes the final layout state for a dynamic tree. This places final layout state information
in the tree, some of which can be accessed in order to control the layout. For information on
accessing some of this information, see the getlayoutbbox command.

This code computes the future layout of a tree, then animates its view so that the center of the
tagOrId's future position is in the center of the screen at the end of the animation. Note that
any treenode which is a descendant of tagOrId will return valid information on a call to get
layoutbbox. Other nodes are not guaranteed to have valid information.

.pad tree computelayout $node
set futureBbox [.pad tree getlayoutbbox $node]
set view [bbcenter $futureBbox]
.pad tree animatelayout -view $view

create tagOrId

Creates a treenode to monitor tagOrId. Creates default layout for treenode. Adds tagOrId to
the padroot, in preparation for placement somewhere else in the hierarchy.

createroot

Creates an invisible root node which is used to organize subtrees of information, and returns
the pad id of the dummy object at that node. Used to connect several nodes together so that
they appear to be root nodes at the same level. Because this is an invisible node, no links will
be drawn to it.

delete [-subtree] tagOrId

Delete the tagOrId and its associated pad object, layout, and link. By default, when there is
no subtree option, tagOrId's children are promoted to be children of tagOrId's parent. If the -
subtree option is used, the entire subtree and all of its associated data and pad objects are
deleted.

getchildren tagOrId

Returns a list of the ids of the pad objects which are children of tagOrId

getfocus tagOrId

Returns the focus value at a tagOrId, which is a number on the interval [0.0, 1.0]

getlayoutbbox tagOrId

Returns the approximate bbox tagOrId will have at the end of the current animation. This is
only valid when used after computelayout, and before any manipulation of any member
of the tree. Moving or resizing any object affected by computelayout will cause a few
bugs in the animation of those objects when animatelayout is called. The system will not
break, but any moved object will first instantly move to the position it held when
computelayout was called, and then will animate to the position computelayout
determined for that object. Relative sizing of objects will be ignored by the system.

getlink tagOrId

Page 56

Return the id of the item which graphically links tagOrId to its parent.

getparent tagOrId

Return the id of the parent of tagOrId.

getroot tagOrId

Gets the root node of tagOrId's hierarchy - the node which resides just below the padroot.

isnode tagOrId

Returns a boolean indicating whether or not tagOrId has a treenode attached to it, and is
therefore a member of a hierarchy.

layout tagOrId [-view view]

Performs a recursive layout of the subtree rooted at tagOrId. If the -view option is used, the
tree will animate to the view provided.

lower tagOrId [belowtagOrId]

Controls the position of tagOrId in the order of its siblings. If belowtagOrId is not provided,
tagOrId is moved to the bottom of the list. If belowtagOrId is provided, tagOrId is moved to
a position just above (after) belowtagOrId.

raise tagOrId [abovetagOrId]

Controls the position of tagOrId in the order of its siblings. If abovetagOrId is not provided,
tagOrId is moved to the top of the list. If abovetagOrId is provided, tagOrId is moved to a
position just above (after) abovetagOrId.

removenode [-subtree] tagOrId

Removes the treenode and layout objects associated with tagOrId. If the -subtree is not
included, tagOrId's information is removed, and tagOrId's children are promoted. If the -
subtree option is used, the entire treenode hierarchy is removed.

reparent [-subtree] tagOrId parenttagorid

Reparents tagOrId to belong to parenttagorid. The default case, in which the -subtree option
is not used, reparents tagOrId, and promotes any children tagOrId may have to be children of
tagOrId's original parent. If the -subtree option is used, the subtree rooted at tagOrId is
moved.

setanimatespeed tagOrId milliseconds

Sets the time for an animation to occur. If this number is 0, the animation will proceed
immediately to the end state. During an animation, if any event is detected, the animation will
proceed to the end state. Thus, a double click on a treenode forces the animation to happen
instantaneously.

setfocus tagOrId [value [levels [falloff]]]

Page 57

Set the focus value at a tagOrId. This must be a number on the range [0,1]. If no value is
provided, the focus is set to 1.0. The levels parameter controls the number of levels this focus
is allowed to spread. The falloff parameter is a multiplier which controls the portion of focus
which is passed on to the next level of recursion. For example, if this number is 0.75, then
focus*0.75 of the focus is passed on at the next level of recursion.

setfocusmag tagOrId value

Recursive set command - works on the entire subtree of the tagOrId is is given. Set the
magnification difference between an object of focus 0 and an object of focus 1.

setlinkmode mode

If mode is "fixed", this sets the penwidth of treelinks to fixed width 1 pixel. If mode is
"scaling", then penwidth scales. The change is applied to all descendants of the specified
treenode

setscale tagOrId value

Set the scale that an object will have when its focus is 0. This is the smallest size that an
object will have in a dynamic tree. When a tree tagOrId is created, this value is automatically
set to the z value of the object.

setspacing tagOrId xvalue [yvalue]

Set the x and y spacing at a tagOrId. This is the amount of spacing between a tagOrId and its
spatial neighbors.

[93] pathName type tagOrId

Returns the type of the item given by tagOrId, such as rectangle or text. If tagOrId refers to more than
one item, then the type of the first item in the display list is returned. If tagOrId doesn't refer to any items
at all then an empty string is returned.

[94] pathName update [-dissolve speed [withRefinement]]

This forces any outstanding updates to occur immediately. If the -dissolve flag is specified, then speed
determines how quickly the update is done. If speed is 0, the update will happen quickly with a swap
buffer. If speed is between 1 and 3, the update will happen with a dissolve effect where 1 is the fastest
and 3 is the slowest. If the withRefinement flag is specified, this forces all refinements to occur
immediately as well - which could be a slow process. Returns an empty string.

[95] pathName urlfetch URL ?option value ...?
pathName urlfetch Token

 where valid options are:
 -file <filename>

-var <variable>
 -updatescript <updateScript>
 -donescript <doneScript>
 -errorscript <errorScript>

Retrieves the specified URL (Universal Resource Locator) from the World Wide Web. This command
returns immediately, and the retrieval is done in the background (within the same process using a file

Page 58

handler.) As portions of the data comes in, updateScript will be executed, and doneScript will be
executed when all of the data has completely arrived. If there are any errors retrieving the data, then
errorScript will be executed. urlfetch returns a token that can be used to interact with this retrieval.
This token is appended to updateScript, doneScript and errorScript when the scripts are executed.

There are three methods to access the data retrieved by urlfetch. The first method is to specify a file
(with -file) in which case the data is written to that file as it is retrieved. The second method is to specify
a Tcl variable (with -var) in which case the data is stored in that global variable as it is retrieved. The
variable will be updated with the current data before updateScript and doneScript are executed. Note
that the variable is not cleared by urlfetch and it is the responsibility of the caller to free it (with
unset). The third method is to use the second form of urlfetch by passing it url token during an
updatescript callback in which case it will return the data retrieved by that fetch. Three code segments
follow which show the use of urlfetch.

#
urlfetch example using a file
#
proc done {filename token} {

set file [open $filename "r"]
... # handle file

}
set file "foo"
.pad urlfetch http://www.cs.unm.edu -file $file \

-donescript "done $file"

#
urlfetch example using a Tcl global variable
#
proc done {token} {

global foo

... # handle data in "foo"
unset foo ;# no longer need URL data

}
.pad urlfetch http://www.cs.unm.edu -var foo \

-donescript "done"
#
urlfetch example using a token to incrementally
handle data as it comes in.
#
proc update {token} {

set data [.pad urlfetch $token]
... # handle incremental data

}
.pad urlfetch http://www.cs.unm.edu \

-updatescript "update" -donescript "done"

[96] pathName warp dx dy

This moves the core pointer relative to its current position by (dx, dy) pixels. Moving the pointer is often
called "warping", and thus the name of the command is warp. Note that generally speaking, warping the
cursor is frowned upon in user interfaces, but this command is supplied as there are some cases where it
is ok.

Page 59

[97] pathName windowshape [innercoords outercoords]

Changes the shape of the top-level window containing the Pad++ widget specified by pathName. The
two parameters each specify lists of coordinates that specify the shape of the window. All coordinates are
scaled to fit the existing width of the window, larger numbers in X go to the right, and larger numbers in
Y go up. innercoords represents the area that can be painted in, and outercoords represents the overall
window shape. The difference between these two shapes becomes the windows border. If innercoords
and outercoords are both empty strings, then the window returns to its default rectangular shape. This
command returns the current window shape. If window has the default shape, it returns {} {}.

For example, the following command changes the top-level window shape to an inverted triangle.

.pad windowshape {0 50 50 50 25 0} {0 50 50 50 25 0}

[98] pathName write [-format type] [-relative] file [tagOrId tagOrId ...]

Writes out all the items on the Pad++ surface into file. If tagOrId's are specified, then just those items are
written out. The file that is written out should be read back in with the read command. If file is an empty
string, than this command returns a string containing the data instead of writing it to a file. If a valid
filename is specified, then this command returns an empty string. Only non-default slots of each object
are written out.

Files may be written in different formats (all of which can be read with the read command.) If type is
"text", then the Tcl code that is used to recreate the items is written. If type is "binary-interchange", then
a custom binary format is used. Both formats are intended to be readable by all future versions of
Pad++. The text format is somewhat larger and slower to read, while the binary format is somewhat
smaller and faster to read. The binary file format is described in the document doc/fileformat.txt.

If the -relative flag is specified, then all referenced files (such as textfiles and images) are referenced
with filenames relative to the file that is saved. This makes it easier to move files between machines as
an entire directory structure with the images can be copied, and the pad files will still work. If the -
relative flag is not specified, then all referenced files are referenced with absolute pathnames.

As the write command writes out objects on the pad, it generates a <Write> event for each item it
writes. The return string from the <Write> event handler will be appended to whatever string this

File Edit Object Font Tools Debug Demo HelpArrange

Page 60

function writes out for each item. See the bind command for more information on this.

[99] pathName zoom zoomFactor padXloc padYloc [animateTime [portalID ...]]

Zoom around specified pad position by multiplicitive factor. If animateTime is specified, then animate
the zoom and take animateTime milliseconds for the animation. If an optional list of portals is specified,
then change the view within the last portal. The entire list is necessary in case the last portal is sitting on
a different surface then this function is called with. Returns an empty string.

Overview of Item Types

The sections below describe the various types of items supported by Pad++. Each item type is characterized by two
things: first, the form of the command used to create instances of the type; and second, a set of itemconfiguration
options for items of that type, which may be used in the create and itemconfigure widget commands. See
the itemconfigure command for the syntax to use these options.

The available item types are:

Alias, Button, Canvas, Checkbox, Checkboxmenuitem, Choicemenu, Frame, Grid, Group, HTML, Image,
KPL, Label, Line, Menu, Menubar, Menuitem, Oval, Pad, Panel, Polygon, Portal, Rectangle, Scrollbar,
Spline, Tcl, Text, Textarea, Textfield, Textfile, and Window.

Several of the items are designed to mirror the functionality and usage of the standard widgets in Java’s Abstract
Windowing Toolkit (AWT). They are also accessible from Tcl along with all the other item types. These include:

Button, Canvas, Checkbox, Checkboxmenuitem, Choicemenu, Frame, Menu, Menubar, Menuitem, Panel,
Scrollbar, Textarea, Textfield, and Window.

Item Options
Every item has several options that can be configured. Some options are available for all item types, and some
options are available for just specific item types. All the options are summarized here followed by a complete
description of each option. Afterwards, each item type is described with a list of which options apply to that item
type.

This is a summary of every itemconfigure option in alphabetical order. Each option either applies to every possible
item type, or has a list of item types to which it applies

-aliases [1] (Read-only) Returns all aliases of the item
-alwaysrender [2] True if the item must be rendered, even if the system is slow and the item is small
-anchor [3] The part of the item that -position refers to
-anchorpt [4] The (x, y) portion of -position
-angle [5] Specifies absolute rotation of item
-anglectr [6] Specifies absolute rotation of item, rotating about specified point
-arrow [7] Whether to draw arrow heads with this item

(Available only for line, spline types)
-arrowshape [8] The shape of drawn arrow heads

(Available only for line, spline types)
-bb [9] A script that gets evaluated to specify the bounding box of an item

(Available only for kpl, tcl types)
-border [10] Specifies border color of item

(Available only for html, portal types)
-borderwidth [11] Specifies width of border

Page 61

(Available only for html, portal types)
-capstyle [12] Specifies how to draw line ends

(Available only for line, spline types)
-clipping [13] Controls if items are clipped to their bounding box when rendered
-command [14] Callback for widgets

(Available only for button, command types)
-dither [15] Render with dithering

(Available only for image types)
-divisible [16] True if events go through a group to its members

(Available only for frame, grid, group, html, panel types)
-donescript [17] A script to evaluate when a background action has completed

(Available only for html types)
-editable [18] True if text item is editable

(Available only for text, textfile, textfield types)
-errorscript [19] A script to evaluate when a background action has an error

(Available only for html types)
-events [20] True if item receives events, false otherwise
-faderange [21] Range over which an item fades in or out
-file [22] File an item should be defined by

(Available only for textfile types)
-fill [23] Specifies fill color of item

(Available only for button, frame, html, label, scrollbar, panel, fill, polygon, portal,
rectangle, textfield types)

-font [24] Specifies font to use for text
(Available only for button, html, label, portal, text, textfile, textfield types)

-from [25] Starting value of valuator widget
(Available only for scrollbar types)

-height [26] Height of an item. Normally computed, but can be set to squash/stretch item
-html [27] The HTML item associated with an htmlanchor

(Available only for htmlanchor types)
-htmlanchors [28] The anchors associated with an HTML page

(Available only for html types)
-image [29] Image data associated with item (allocated by image alloc)

(Available only for htmlanchor, image types)
-info [30] A place to store application-specific information with an item
-ismap [31] True if an htmlanchor is an image map

(Available only for htmlanchor types)
-joinstyle [32] Specifies how to draw the joints within multi-point lines

(Available only for line, spline, oval, polygon, rectangle types)
-layer [33] The layer an item is on
-linesize [34] Amount widget should change to represent a line change

(Available only for scrollbar types)
-lock [35] Locks an item so it can not be modified or deleted
-lookon [36] Specifies the pad widget this item sees

(Available only for portal types)
-maxsize [37] The maximum size an item is rendered it (absolute or relative to window size)
-members [38] The list of members of a group

(Available only for frame, group, html, panel types)
-memberlabels [39]List of labels for a pull-down or pop-up menu

(Available only for menu and choicemenu types)
-menubar [40] Menubar associated with a frame

(Available only for frame types)
-minsize [41] The minimum size an item is rendered it (absolute or relative to window size)
-noisedata [42] Specifies parameters to render item with noise

Page 62

(Available only for line line types)
-orientation [43] Orientation of widget (horizontal or vertical.)

(Available only for scrollbar types)
-pagesize [44] Amount widget should change to represent a page change

(Available only for scrollbar types)
-pen [45] Specifies pen color of item

(Available only for button, label, line, spline, oval, polygon, portal, rectangle, text
textfile, textfield types)

-penwidth [46] Specifies width of pen
(Available only for line, spline, oval, polygon, rectangle types)

-position [47] The absolute position of the object (x, y, scale)
-reference [48] What item an alias references

(Available only for alias types)
-relief [49] Specifies how border should be rendered (raised, flat, sunken, ridge, groove)

(Available only for button, portal types)
-renderscript [50]A script that gets evaluated every time an item is rendered
-rposition [51] The relative position of the object (to groups)
-scale [52] The (scale) portion of -position
-state [53] State of an item (such as visited, unvisited, etc.)

(Available only for button, htmlanchor types)
-sticky [54] Specifies if an item should stay put when the view changes
-tags [55] List of tags associated with an item
-text [56] The text of any item containing text

(Available only for button, label, text, textfile, textfield types)
-timerrate [57] Frequency timerscript should fire
-timerscript [58] Script associated with an item that fires at regular intervals
-title [59] Some items only: Title of an item

(Available only for portal types)
-to [60] Ending value of valuator widget

(Available only for scrollbar types)
-transparency [61]Transparency of an item. 0 is completely transparent, 1 is completely opaque
-updatescript [62] A script to evaluate when a background action has made progress

(Available only for html types)
-url [63] The URL associated with an item

(Available only for html, htmlanchor types)
-value [64] Current value of valuator widget

(Available only for scrollbar types)
-view [65] Specifies the view this item sees

(Available only for pad, portal types)
-viewscript [66] A script that gets evaluated whenever the view is changed
-visiblelayers [67]The layers that are visible within this view (just for portals and surface, item #1)

(Available only for pad, portal types)
-width [68] Width of an item. Normally computed, but can be set to squash/stretch an item
-writeformat [69] Controls whether disk-based item is written out by copy or reference

(Available only for image types)
-zoomaction [70] A script that gets evaluated when an item is scaled larger or smaller than a set size

This is a list of every itemconfigure option with their complete definition in alphabetical order.

[1]-aliases (read-only)
(Available for all item types)

This returns all the alias items that reference this item.

Page 63

[2]-alwaysrender boolean
(Available for all item types)

The rendering engine may decide to not render an item for reasons of efficiency (although it may get
rendered at higher levels of refinement). When this flag is set (i.e., equals 1), the item will be rendered no
matter how big it is (as long as it is bigger than its -minsize. Defaults to false (0).

[3]-anchor anchorPos
(Available for all item types)

AnchorPos tells how to position the object relative to the positioning point for the item (see -
position); it may have any of the forms accepted by Tk_GetAnchor. For example, if anchorPos is
"center" then the object is centered on the point; if anchorPos is "n" then the object will be drawn so that
its top center point is at the positioning point. This option defaults to center.

[4]-anchorpt {x y}
(Available for all item types)

This is an alias for the first two elements of the -position itemconfigure option. (x, y) specifies the anchor
point of the item. This means that the item will be positioned so that its anchor (north, center, southwest,
etc.) will appear at the specified anchor point. (x, y) are absolute quantities, independent of the current
view and independent of any group membership. (Also see the -anchor, -position, -rposition,
and -scale itemconfigure options.)

[5]-angle angle
(Available for all item types except HTML and widgets)

Sets the absolute rotation of an item in degrees. The item is rotated around its anchor so that it is rotated
angle degrees relative to its creation. (Also see the rotate command.)

[6]-anglectr {angle xctr yctr}
(Available for all item types except HTML and widgets)

Sets the absolute rotation of an item in degrees. The item is rotated around the point (xctr, yctr) so that it
is rotated angle degrees relative to its creation. (Also see the rotate command.)

[7]-arrow where
(Available only for line, spline types)

Indicates whether or not arrowheads are to be drawn at one or both ends of the line. where must have
one of the values "none" (for no arrowheads), "first" (for an arrowhead at the first point of the line),
"last" (for an arrowhead at the last point of the line), or "both" (for arrowheads at both ends). This
option defaults to "none".

[8]-arrowshape shape
(Available only for line, spline types)

This option indicates how to draw arrowheads. The shape argument must be a list with three elements,
each specifying a distance. The first element of the list gives the distance along the line from the neck of
the arrowhead to its tip. The second element gives the distance along the line from the trailing points of
the arrowhead to the tip, and the third element gives the distance from the outside edge of the line to the
trailing points. If this option isn't specified then Pad++ picks a "reasonable" shape.

Page 64

[9]-bb boundingboxScript
(Available only for kpl, tcl types)

A script that will be evaluated to compute the bounding box of this item. For Tcl, It should return a 4
element list whose members are "x1 y1 x2 y2" which are the lower left and upper right corners of this
items bounding box. For KPL, It should return two two-element vectors that specify (x1, y1), (x2, y2).

[10]-border color
(Available only for html, portal types)

Color specifies a color to use for drawing the border of the portal; it may have any of the forms accepted
by Tk_GetColor. If color is "none", the outline will not be drawn. This option defaults to the fill color.

[11]-borderwidth width
(Available only for html, portal types)

Width specifies the width of the border in current units to be drawn around the item. Wide borders will
be drawn completely inside the path specified by the points of this object. Note that this is different than
pens. If width is 0, then the border will always be drawn one pixel wide, independent of the zoom. Width
defaults to 1 pixel.

[12]-capstyle cap
(Available only for line, spline types)

Specifies how the ends of the line are drawn. cap may be one of:

• butt: The ends are drawn square, at the end point.

• projecting: The ends are drawn square, past the endpoint.

• round: The ends are rounded.

[13]-clipping boolean
(Available for all item types)

By default, built-in items (such as lines, text, etc.) do not get clipped to their bounding box, and
procedural items (items with -renderscripts) do. This flag turns clipping on or off. Be warned, that
turning off clipping for a procedural object is dangerous. If you draw outside the object's bounding box,
you can end up with screen garbage. Defaults to true (1) for items with -renderscripts, and false (0) for
all other items.

[14]-command script
(Available only for button, command types)

A script that gets executed when the widget is activated. The definition of activation for each widget is
different. For example, a button is activated when it is pressed and released while the pointer is still over
the button. A scrollbar is activated whenever the thumb is moved. Some widgets append information
about the activation on the end of the script (for instance, scrollbars append the current value). See the
description of each widget for information about this.

[15]-dither dithermode
(Available only for image types)

Page 65

Specifies if and when the image is rendered with dithering. Dithering is a rendering technique that
allows closer approximation to the actual image colors, even when the requested colors are not
available. Rendering images with dithering is much slower than without, so this option allows control as
to when (if at all), dithering is used. dithermode may be any of

• nodither: The image is never rendered with dithering.

• dither: The image is always rendered with dithering.

• refinedither: The image is initially rendered without dithering, and then refined with
dithering.

Defaults to refinedither (dither only on refinement).

[16]-divisible boolean
(Available only for frame, grid, group, html, panel types)

Specifies whether events should go to the grid members. If -divisible is 1 (true), events never go to the
grid object, but pass through it to the members. If the event is within the bounding box of the group, but
does not hit any members, then it will be ignored by the group. If -divisible is 0 (false), then the event
will go to the group if it is within the bounding box of the group whether there is a member at the place
the event points to or not. Defaults to 1 (true).

[17]-donescript script
(Available only for html types)

If script is specified, it gets evaluated when the html item has completed loading - including all in-line
images. script is postpended with the id of the html object. This is necessary because the script is
typically specified on the create line where the id of the html object is not yet known.

[18]-editable boolean
(Available only for text, textfile, textfield types)

If editable is TRUE, then the item’s default event handlers will allow the item to be edited. This applies
only to text widgets. Default text editing includes mouse copy and paste, and uses basic emacs-like
bindings for manipulating the cursor.

[19]-errorscript script
(Available only for html types)

If script is specified, it gets evaluated if there is an error creating the html item. An error can occur for
many reasons - especially because creating an html typically starts a network communication process for
fetching the URL. script is postpended with the id of the html object. This is necessary because the
script is typically specified on the create line where the id of the html object is not yet known.

[20]-events boolean
(Available for all item types)

Controls whether an item receives input events. If set to false (0), it does not respond to events. Defaults
to true (1).

[21]-faderange value
(Available for all item types)

Page 66

Controls over how long a period an item fades out as it approaches its minimum or maximum size. value
specifies this period as a percentage of the object's size (from 0.0 to 1.0). Where 0.0 means that the item
doesn't fade out all, it just blinks off when its extreme is reached, and 1.0 means that it slowly fades out
over its entire range of sizes. Defaults to 0.3. (Also see the -minsize and -maxsize itemconfigure options.)

[22]-file fileName
(Available only for textfile types)

fileName specifies the filename to read a text file from.

[23]-fill color
(Available for button, frame, html, label, scrollbar, panel, fill, polygon, portal, rectangle, textfield types)

Fill the background of the html item with color, which may be specified in any of the forms accepted by
Tk_GetColor. If color is "none", the background will not be drawn. It defaults to the background of the
Pad++ widget it is created on.

[24]-font fontname
(Available only for button, html, label, portal, text, textfile, textfield types)

Specifies the font to be used for rendering text for this item. fontname must specify a filename which
contains an Adobe Type 1 font, or the string "Line" which causes the Pad++ line-font to be used.
Defaults to "Times-12".

[25]-from value
(Available only for scrollbar types)

Specifies the starting (lowest) value for a valuator widget to use. (Also see the -to, -linesize and -
pagesize itemconfigure options.)

[26]-height height
(Available for all item types)

By default, the height of every item is automatically computed based on its contents. If the -height
option is set, however, then this overrides the automatically computed value. Most items are squashed or
stretched to fit the specified height. Note that text and alias items, however, are clipped instead of being
squashed or stretched. (Also see the -width itemconfigure option.)

[27]-html
(Available only for htmlanchor types)

Returns the html item this anchor belongs to. This is a read-only option.

[28]-htmlanchors
(Available only for html types)

Returns all the anchors that are part of this HTML item. This is a read-only option, and may not be set.

[29]-image imagetoken
(Available only for htmlanchor, image types)

Specifies the image data associated with this item. Note that changing which image data an item uses
does not effect the image data. Specifically, if the -image is set to the empty string, the image data it
previously specified is unaffected and still needs to be deallocated with the "image free" command if

Page 67

it is no longer being used. (Also see the image command.)

[30]-info info
(Available for all item types)

A generic info field where the user may place any string. (See the find withinfo command).

[31]-ismap
(Available only for htmlanchor types)

Returns true if this anchor is an imagemap. This is a read-only option.

[32]-joinstyle join
(Available only for line, spline, oval, polygon, rectangle types)

Specifies how the joints at vertices are drawn. join may be one of:

• bevel: The joints are drawn without protruding. They are cut-off and sharp.

• miter: The joints are drawn protruding to a point.

• round: The joints are rounded.

[33]-layer layer
(Available for all item types)

Specifies the layer the item is on. Every item sits on a layer (which is specified by a string), and each
view (top-level window and portals) specifies which layers are visible within that view. This gives
control over objects are visible where and can be used with portals to implement very simple filters. (See
the -visiblelayers itemconfigure option of portals and the top-level window which is specified by the
surface (item 1). Defaults to "main".

[34]-linesize value
(Available only for scrollbar types)

Specifies the amount a valuator widget should change to represent a line change. For a scrollbar, this is
the amount changed when the trough is clicked. (Also see the -from, -to and -pagesize
itemconfigure options.)

[35]-lock lock
(Available for all item types)

When an item is locked, it can not be deleted or modified (except for changing the lock status). Note
that attempting to modify or delete a locked item does not generate an error. It fails silently. This is so it
is easy to modify all items associated with a tag and if certain items are locked they will just not get
modified. The restricted commands on locked items are: coords, delete, itemconfigure,
scale, slide, and text.

[36]-lookon surface
(Available only for portal types)

Specifies which Pad++ surface this portals looks onto. surface should be the complete pathName of a
Pad++ widget. Defaults to the surface the portal was created on.

Page 68

[37]-maxsize size
(Available for all item types)

Specifies the maximum size (in current units) this item should be rendered at. That is, if the view is such
that the largest dimension of this object is greater than size units, it will not be displayed. When an object
is not displayed because it is too large, it does not receive events. When an object approaches its
maximum size it will fade out until it completely disappears when it reaches its maximum size. If size is -
1, then it has no maximum size and will never disappear because it is too large. See the -faderange
itemconfigure option to control how quickly an item fades out.

size may also be specified as a percentage of the view it is visible in (top-level window or portal). To
specify size as a percentage, it should be in the range from 0 to 100 and end with a "%". Example:

.pad ic 5 -minsize 55%

size defaults to 10,000 pixels.

Also note that the rendering engine may decide to not display an item for reasons of efficiency if it is
reasonably small. See the -alwaysrender flag to avoid this.

[38]-members members
(Available only for frame, group, html, panel types)

members is a list of object ids that specify the list of members of this group. Setting the members of a
group first removes all existing members, and then inserts the new members. The members are rendered
in the order they are specified in members.

[39]-memberlabels labels
(Available only for menu and choicemenu types)

Specifies a list of labels that can be used when creating a menu or choicemnu instead of explicitly
creating a menuitem for each label. I.e.:

.pad create menu -memberlabels {"Content" "Index" "Help"} \
-text "Help"

[40]-menubar menubar
(Available only for frame types)
Specifies the menubar associated with this frame (if any). By associating a menubar with a frame, the
menubar is resized so as to be positioned along the top of the frame in the traditional manner. When the
frame is resized, the associated menubar is also resized.

[41]-minsize size
(Available for all item types)

Specifies the minimum size (in current units) this item should be rendered at. That is, if the view is such
that the largest dimension of this object is less than size units, it will not be displayed. When an object is
not displayed because it is too small, it does not receive events. When an object approaches its minimum
size it will fade out until it completely disappears when it reaches its minimum size. See the -faderange
itemconfigure option to control how quickly an item fades out.

size may also be specified as a percentage of the view it is visible in (top-level window or portal). To
specify size as a percentage, it should be in the range from 0 to 100 and end with a "%". Example:

Page 69

.pad ic 5 -minsize 55%

size defaults to 0.

Also note that the rendering engine may decide to not display an item for reasons of efficiency if it is
reasonably small. See the -alwaysrender flag to avoid this.

[42]-noisedata noisedata
(Available only for line types)

Specifies the noise parameters used to make rough-looking lines. noisedata is a four element list of
numbers of the form:

"Pos Freq Amp Steps"

Rough lines are generated using the Perlin noise function. The Perlin noise function is like a sin function
with a very irregular amplitude - like sin, noise has a constant period (one), but no two segments of the
noise curve are alike. Noisy lines are generated by adding noise to the tangent direction of a line.

In the current implementation, there are four noise parameters: Pos, Freq, Amp, and Steps. Pos
determines what part of the noise curve is sampled for that object. Freq determines the rate of sampling,
Amp indicates the level, and Steps indicates how many samples to introduce per line segment. The
drawing algorithm is straightforward. For each line segment, coordinates are generated as follows:

DrawRoughLine(x1, y1, x2, y2, Pos, Freq, Amp, Steps) :
step = 1.0/Steps;
mag = length(x1,y1,x2,y2);
theta = direction(x1,y1,x2,y2);

xmag = Amp * sin(theta) * mag;
ymag = Amp * cos(theta) * mag;

vertex(x1, y1);

for (a = step; a < steps; a += step) {
n = noise(Pos);
vertex(lerp(a,x1,x2) + n*xamp, lerp(a,y1,y2) + n*yamp);
Pos += Freq;

}
vertex(x2, y2);

Note that we multiply Amp by mag, the length of the line. This is necessary in Pad++ since the zooming
functionality means that lines can be of nearly any size. Making the level of noise proportional to the
length of the line keeps the informality uniform at all sizes. (We should probably also modulate the
number of points generated by the thickness of the line, so small thin lines are cheap).

Values of 0.3 for Freq, 0.1 for Amp, 10 for Steps produces pleasant-looking lines. Pos can be an arbitrary
floating point number - giving different objects unique values for Pos ensures that each object has a
different appearance.

[43]-orientation orientation
(Available only for scrollbar types)

Page 70

Specifies the orientation of a rectangular widget. orientation can be "horizontal" or "vertical".

[44]-pagesize value
(Available only for scrollbar types)

Specifies the amount a valuator widget should change to represent a page change. For a scrollbar, this is
the amount changed when an arrow is clicked. (Also see the -from, -to and -pagesize
itemconfigure options.)

[45]-pen color
(Available for button, label, line, spline, oval, polygon, portal, rectangle, text, textfile, textfield types)

Color specifies a color to use for drawing the line; it may have any of the forms acceptable to
Tk_GetColor. It may also be "none", in which case the line will not be drawn. This option defaults to
black.

[46]-penwidth width
(Available only for line, spline, oval, polygon, rectangle types)

Width specifies the width of the pen in current units to be drawn around the item. Wide lines will be
drawn centered on the path specified by the points. If width is 0.0, then the pen will always be drawn one
pixel wide, independent of the zoom. Width defaults to 1 pixel.

[47]-position {x y scale}
-pos is an alias for -position
(Available for all item types)

This specifies an items position and size through three variables (x, y, scale). (x, y) specifies the anchor
point of the item. This means that the item will be positioned so that its anchor (north, center, southwest,
etc.) will appear at the specified anchor point. scale specifies the magnification of an item. (x, y, scale)
are all absolute quantities, independent of the current view and independent of any group membership.
Items that have coordinates (lines, rectangles, polygons, and portals) have a default -position which
depends on the coordinates of the item. For a "center" anchor (the default), the position will be the
center of the coordinates. Other items (that don’t have coordinates) have a default position of "0 0 1".
(Also see the -anchor, -anchorpt, -rposition, and -scale itemconfigure options.)

The -position option may alternatively be given the special token "center" which means that the
item should positioned and scaled so that it biggest dimension fills up 75% of the window, and it is
centered. (This is dependent on the current view, and the current window dimensions.)

[48]-reference id
(Available only for alias types)

Specifies the id of an item that an alias references.

[49]-relief relief
(Available only for button, portal types)

Specifies the relief to be used by the border of this item. relief may be any of: raised, sunken, flag, ridge,
or groove. Defaults to "ridge"

[50]-renderscript TclScript
(Available for all item types)

Page 71

Specifies a Tcl script that will be evaluated every time the object is rendered. The script gets executed
when the object normally would have been rendered. By default, the object will not get rendered. The
script may call the renderitem function at any point to render the object. An example is:

.pad itemconfigure 22 -renderscript {
puts "Before"
.pad renderitem
puts "After"

}

It would be possible to get in an endless render loop with the -renderscript option. If a
-renderscript callback triggers a render which causes that item to be redrawn, the system will be in
an endless render loop. To avoid this problem, items do not implicitly trigger damage within a
-renderscript callback. If you do want to explicitly damage an item within a -renderscript
callback, you must use the damage command. Be very careful to avoid infinite render loops.

[51]-rposition {x y scale}
-rpos is an alias for -rposition
(Available for all item types)

This is similar to the -position itemconfigure option, but (x, y, scale) are relative to the current
group’s position (whereas they are absolute for -position.) If setting this option on an item that is
not a member of a group, then it behaves identically to -position. If setting this option on an item that is
a member of a group, then the item will actually appear at a position that is first specified by the item’s
position, and then transformed by the group’s position. Note that this option can be difficult to use and
generally is not recommend. (Also see the -anchor, -anchorpt, -position, and -scale
itemconfigure options.)

[52]-scale scale
(Available for all item types)

This is an alias for the first last (third) element of the -position itemconfigure option. scale specifies the
magnification of an item, and is an absolute quantity, independent of the current view and independent of
any group membership. (Also see the -anchor, -anchorpt, -position, and -rposition
itemconfigure options.)

[53]-state state
(Available only for button, htmlanchor types)

Specifies the state of the anchor (which controls its color). There is no direct control over an anchor’s
color. Rather, it uses the default colors unless the HTML page specifies anchor colors. State may be one
of "unvisited", "active", "visited", or "notloaded". In-line images that haven’t been loaded yet are
"notloaded".

[54]-sticky style
(Available for all item types)

Specifies if this item should be "sticky". Sticky items are constrained by the view so that whenever the
view changes, sticky items are moved in response. There are several different kinds of sticky
constraints. The simplest one (style == ’1’) makes the sticky item "stick" to the screen, independent of
the current view. That is, as the view pans and zooms, sticky items appear effectively stuck to the
screen. The different kinds of sticky constraints are described in detail below. Sticky items are rendered
in their normal stacking order, and thus sticky items can appear above or below non-sticky items. (See
the getview and moveto commands.) Defaults to 0 (false).

Page 72

There are four kinds of sticky objects. They are:

• Regular sticky items (style == ’1’). These don't move at all as the view changes.

• "Sticky Z" items (style == ’z’). These do not zoom, but they pan normally. That is, they
when the view changes, their (x, y) position does not change, but their scale is recalculated so their
size does not change. This can be appropriate for handles or labels where you don't want their size
to change, but you do want them to stay with other related objects. As a result of this, the old
'handle' object type has now been deleted. The previous handles never worked quite right within
portals (they left screen junk), and their functionality is almost completely replaced by sticky z
objects. Note that one thing sticky z objects can not do that handles did do is that sticky z objects
don't scale only at the top-level view. Since they are otherwise regular objects, they can appear
scaled within portals.

Example: The following code creates a rectangle with 4 non-zooming "handles" on its corners.

set rect [.pad create rectangle 0 0 100 100 -fill white]
.pad create rectangle 0 0 6 6 -fill red -pos "0 0 1" -sticky z
.pad create rectangle 0 0 6 6 -fill red -pos "100 0 1" -sticky z
.pad create rectangle 0 0 6 6 -fill red -pos "0 100 1" -sticky z
.pad create rectangle 0 0 6 6 -fill red -pos "100 100 1" -sticky z

• "Sticky X" items (style == ’x’). This is like sticky z, but the items also don't pan horizontally.

• "Sticky Y" objects (style == ’y’). This is like sticky z, but the items also don't pan vertically.

• "Sticky view" objects (style == ’view’). This is like sticky z, but the items always stays within
the view - and the constrained position is remembered, so that the object does not "want" to stay
in its original position as it does with the other sticky types. Instead, once it is moved to stay
within the view, the new position is its preferred position, and it sticks there.

[55]-tags tagList
(Available for all item types)

Specifies a set of tags to apply to the item. TagList consists of a list of tag names, which replace any
existing tags for the item. TagList may be an empty list.

[56]-text string
(Available only for button, label, text, textfile, textfield types)

String specifies the characters to be displayed in the text item. Newline characters cause line breaks, and
tab characters are supported. This option defaults to an empty string.

[57]-timerrate rate
(Available for all item types)

Specifies the frequency in milliseconds that the object's timerscript should be evaluated. If it is set to 0,
the timer is turned off. Defaults to off (0). (see -timerscript).

[58]-timerscript TclScript
(Available for all item types)

Specifies a Tcl script that will be evaluated regularly, every rate milliseconds as specified by -timerrate
(if -timerrate is greater than zero). This evaluation is independent of rendering and events. Returns the
current TclScript for the object. (see -timerrate).

Page 73

[59]-title title
(Available only for portal types)

If title is specified, then the portal will be rendered with a titlebar consisting of title. Otherwise, no title
bar is drawn. Defaults to the empty string.

[60]-to value
(Available only for scrollbar types)

Specifies the ending (highest) value for a valuator widget to use. (Also see the -from, -linesize
and -pagesize itemconfigure options.)

[61]-transparency value
(Available for all item types)

Specifies the transparency an item is drawn with. value must be a value between 0.0 and 1.0 where 0.0 is
completely transparent and 1.0 is completely opaque. 1.0 is the default. If a portal or group is partially
transparent, all of its member or visible objects, respectively, will have their transparency multiplied by
the portals or groups.

[62]-updatescript script
(Available only for html types)

If script is specified, it gets evaluated when the html source has loaded, and then once every time an in-
line is loaded. script is postpended with the id of the html object. This is necessary because the script is
typically specified on the create line where the id of the html object is not yet known.

[63]-url urlname
(Available only for html, htmlanchor types)

Specifies the URL (Universal Resource Locator, or World-Wide Web address) that this html page should
be accessed from. It must be specified with a valid address. Some examples are: "http://www.unm.edu",
"http://www.cs.unm.edu/bederson", "file://nfs/u3/bederson/public_html/begin.html", "home-page.html".

[64]-value value
(Available only for scrollbar types)

Specifies the value of valuator widget. For instance, this specifies the position of the thumb on a
scrollbar.

[65]-view {x y zoom}
(Available only for pad, portal types)

Specifies the location of this view. For top-level views (i.e., Pad++ surfaces), this changes the whole
view. For portals, this changes the view within the portal. (x, y) specifes the point at the center of the
view, and zoom specifies the magnification. For Pad++ surfaces, this defaults to (0, 0, 1). For portals,
this defaults to directly under the location the portal was created at. (Also see the moveto command.)

[66]-viewscript TclScript
(Available for all item types)

Specifies a Tcl script that will be evaluated every time the view onto the Pad++ surface is changed. This
script gets executed after the view coordinates have changed, but before the new scene gets rendered.

Page 74

Returns the current viewscript.

[67]-visiblelayers layers
(Available only for pad, portal types)

Specifies what layers are visible within this portal. layers can be either a list of layers which will specify
which items will be displayed within this portal, or take the special form of "all -layer1 -layer2 -layer3
..." in which case all layers except the ones specified will be displayed. Defaults to "all". layers may also
take the special value "none" which means that no layers are visible. (See the -layer itemconfigure
option that all items have.)

[68]-width width
(Available for all item types)

By default, the width of every item is automatically computed based on its contents. If the -width
option is set, however, then this overrides the automatically computed value. Most items are squashed or
stretched to fit the specified width. Note that text and alias items, however, are clipped instead of being
squashed or stretched. (Also see the -height itemconfigure option.)

[69]-writeformat [copy | reference]
(Available only for image types)

This option controls whether objects that are created from disk-based data are saved by storing a copy of
all of the original data, or it references the original file. If the file is written as text, then the copy option
to writeformat makes copies of the original datafiles so that there are multiple files created. The binary
option results in writing the data in the output file.

[70]-zoomaction {size growScript shrinkScript}
(Available for all item types)

Specifies a pair of Tcl scripts that gets evaluated when an item grows or shrinks such that its size crosses
the specified zoomaction size. This is a simple way of making "semantically zoomable" objects - that is,
objects that look different when they are rendered at different sizes. When the item grows larger than
size, growScript is evaluated, and when it shrinks smaller than size, shrinkScript is evaluated.

Any number of pairs of scripts may be associated with different sizes. Each use of -zoomaction may
specify a different size, or modify scripts for an existing size. If both scripts are empty strings, then that
zoomaction is deleted. This returns a list of zoomaction size, growScript, shrinkScript triplets.

Note that for a zoomaction to work, the item must get rendered on both sides of the size. It is possible to
create an object and then immediately change its size before it gets rendered. In this case, the
zoomaction will not get fired.

The script gets executed when the object normally would have been rendered. By default, the object will
not get rendered. The script may call the renderitem function at any point to render the object. See
the description of -renderscript for an example. The deletion of items during a zoomaction is delayed
until after the current render is finished.

Here is an example that turns a rectangle into an image when it is zoomed in, and back into the rectangle
when zoomed out:

proc grow {} {
.pad ic rect -transparency 0
.pad pushcoordframe rect

Page 75

set image_token [.pad image alloc images/unm_logo_orig.gif]
.pad create image -image $image_token -anchor sw -tags "image"
.pad popcoordframe
.pad renderitem

}

proc shrink {} {
.pad ic rect -transparency 1
set image_id [.pad find withtag image]
if {$image_id != ""} {

set image_token [.pad ic image -image]
.pad freeimage $image_token
.pad delete image

}
.pad renderitem

}

proc testzoomaction {} {
.pad create rectangle 0 0 341 222 -pen black -fill yellow3 \

-zoomaction {250 grow shrink} -tags "rect"
}

Alias Items
Items of type alias are items that mirror another existing item. They are separate items and have their own position,
tags, event bindings, etc., but use the rendering of another item. Aliases are created with widget commands of the
following form:

pathName create alias [option value option value ...]

Aliases refer to the item specified by the -reference option . If the reference is not specified, or is deleted, then the
alias item is not rendered. Note that aliases are still somewhat buggy, and their behavior on groups of items is not
guaranteed. The following options are supported for aliases:

-reference [48] What item an alias references

Note that when the -width or -height of an alias set, the alias is clipped to those dimensions rather than being
squashed or stretched as most items are.

Button Items
Button items are widgets that can be pressed and let go. If the pointer is over the button when the mouse button is
released, an associated script will be fired. Buttons are created with widget commands of the following form:

pathName create button [option value option value ...]

Buttons are one of several widgets that are designed to mirror the functionality and usage of the standard widgets in
Java’s Abstract Windowing Toolkit (AWT). When buttons are created, they automatically get the tag "Button".
Buttons have default event handlers which define their behavior. These event handlers are defined on the tag
"Button" for the "Run" event mode. See the section on Default Bindings for more details about the event bindings.

The following options are supported for buttons:

-command [14] Callback that is executed when button is pressed

Page 76

-fill [23] Specifies fill color of button
-font [24] Specifies font to use for text
-pen [45] Specifies pen color of button
-relief [49] Specifies how border should be rendered (raised, flat, sunken, ridge, groove)
-state [53] State of the button (normal, active, or disabled)
-text [56] The text of the button

Canvas Items
Canvas items are widgets that are rendered as a simple rectangle, and their only purpose is to be derived from.
From Tcl, this can be done with a -renderscript. There are no default event handlers. Canvases are created with
widget commands of the following form:

pathName create canvas [option value option value ...]

Canvases are one of several widgets that are designed to mirror the functionality and usage of the standard widgets
in Java’s Abstract Windowing Toolkit (AWT). When buttons are created, they automatically get the tag
"Canvas". Canvases have no default event handlers which define their behavior.

The following options are supported for canvases:

-fill [23] Specifies fill color of canvas

Checkbox Items
Checkbox items are widgets that can be pressed and let go. If the pointer is over the checkbox when the mouse
button is released, an associated script will be fired. Checkboxes maintain a binary state, and represent its state
visually with a little box. Checkboxes are created with widget commands of the following form:

pathName create checkbox [option value option value ...]

Checkboxes are one of several widgets that are designed to mirror the functionality and usage of the standard
widgets in Java’s Abstract Windowing Toolkit (AWT). When checkboxes are created, they automatically get the
tag "Checkbox". Checkboxes have default event handlers which define their behavior. These event handlers are
defined on the tag "Checkbox" for the "Run" event mode. See the section on Default Bindings for more details
about the event bindings.

The following options are supported for checkboxes:

-command [14] Callback that is executed when checkbox is pressed
-fill [23] Specifies fill color of checkbox
-font [24] Specifies font to use for text
-pen [45] Specifies pen color of checkbox
-relief [49] Specifies how border should be rendered (raised, flat, sunken, ridge, groove)
-state [53] State of the checkbox (normal, active, or disabled)
-text [56] The text of the checkbox

Checkboxmenuitem Items
Checkboxmenutem items are widgets that are elements of pull-down or pop-up menus. When they are a member of
a menu, they can be activated by moving the mouse over them and letting go. They maintain a binary state that is
visually represented on the itme. When a checkboxmenuitem is activated, an associated script will be fired.
Checkboxmenuitems are created with widget commands of the following form:

pathName create checkboxmenuitem [option value option value ...]

Checkboxmenuitems are one of several widgets that are designed to mirror the functionality and usage of the

Page 77

standard widgets in Java’s Abstract Windowing Toolkit (AWT). When checkboxmenuitems are created, they
automatically get the tag "CheckboxMenuItem". Checkboxmenuitems have default event handlers which define
their behavior. These event handlers are defined on the tag "CheckboxMenuItem" for the "Run" event mode. See
the section on Default Bindings for more details about the event bindings.

The following options are supported for checkboxmenuitems:

-command [14] Callback that is executed when menuitem is pressed
-fill [23] Specifies fill color of menuitem
-font [24] Specifies font to use for text
-pen [45] Specifies pen color of menuitem
-relief [49] Specifies how border should be rendered (raised, flat, sunken, ridge, groove)
-state [53] State of the menuitem normal, active, or disabled)
-text [56] The text of the menuitem

See the documention for Menu and Choicemenu items for some example code that uses checkboxmenuitems.

Choicemenu Items
Choicemenu items are widgets that implement a pop-up menu. They contain a list of menuitems or
checkboxmenuitems. When they are pressed, the member menuitems and checkboxmenuitems are displayed and
may be selected. They always display the value of the currently selected menuitem or checkboxmenuitem.
Choicemenus are created with widget commands of the following form:

pathName create choicemenu [option value option value ...]

Choicemenus are one of several widgets that are designed to mirror the functionality and usage of the standard
widgets in Java’s Abstract Windowing Toolkit (AWT). When choicemenus are created, they automatically get the
tag "ChoiceMenu". Choicemenus have default event handlers which define their behavior. These event handlers
are defined on the tag "ChoiceMenu" for the "Run" event mode. See the section on Default Bindings for more
details about the event bindings.

The following options are supported for choicemenus:

-command [14] Callback that is executed when choicemenu is pressed
-fill [23] Specifies fill color of choicemenu
-font [24] Specifies font to use for text
-members [38] The list of members of a choicemenu
-pen [45] Specifies pen color of choicemenu
-relief [49] Specifies how border should be rendered (raised, flat, sunken, ridge, groove)
-state [53] State of the choicemenu (normal, active, or disabled)
-text [56] The text of the choicemenu

The following example shows how a pop-up menu can be created.

set c1 [.pad create menuitem -text "Times"]
set c2 [.pad create menuitem -text "Helvetica"]
set c3 [.pad create menuitem -text "Courier"]
.pad create choicemenu -members "$c1 $c2 $c3" -text "Font"

Frame Items
Frame items are widgets that act like top-level windows within Pad++. They are used to group a collection of
items. They are similar to panels, except they window dressing that is used to manipulate the frame. Frames are
created with widget commands of the following form:

Page 78

pathName create frame [[x1 y1 x2 y2] option value option value ...]

Frames are one of several widgets that are designed to mirror the functionality and usage of the standard widgets in
Java’s Abstract Windowing Toolkit (AWT). When frames are created, they automatically get the tag "Frame".
Frames have default event handlers which define their behavior. These event handlers are defined on the tag
"Frame" for the "Run" event mode. See the section on Default Bindings for more details about the event bindings.

Unlike group items, frames do not set their size based on their contents. Rather, they are fixed size as specified by
the command line coordinates, or by the -width [68] and -height [26] itemconfigure options. Frames have
their own coordinate system where (0, 0) specifies the panels lower left corner. Adding items to a frame adds them
relative to the frame’s coordinate system.

The frame window dressing gives a pseudo-3D titlebar and border which can be used to move and resize the frame.

The following options are supported for frames:

-divisible [16] True if events go through the frame to its members
-fill [23] Specifies fill color
-members [38] The list of members of the frame
-menubar [40] Menubar associated with a frame

Also, see the addgroupmember [2] and removegroupmember [72] commands that can be used to add and
remove items from the frame.

Grid Items
Items of type grid arrange one or more items in rows and columns and treats them as a group. It is based on the Tk
grid geometry manager and its behavior and Tcl syntax are very similar to it. In pad, all manipulations of a grid
once it is created are affected through the grid sub-command. Note that rows and columns start from the top left
corner of the grid (as in the Tk grid). The complete grid sub-command is described in this section.

Grids are created with widget commands of the following form:

pathName create grid [slaves...]

Grid creation is slightly different from creation of other pad objects. Instead of the normal command-line option-
value pairs a list of slaves and their grid configuration can be specified (see the section below on sub-commands
and slave configuration). Grids are special group objects and inherit much of the group functionality and support
the "-divisible" option which can be set (using itemconfigure) once the grid is created:

-divisible [16] True if events go through a group to its members

The syntax of the grid sub-command is:

pathName grid slave [slave...] option value [option value...]
pathName grid command arg [arg...]

If the first argument of the grid command is a slave object then the remainder of the command line is processed in
the same way as the grid configure command. The "-in" option can be used to add a slave to a grid. The following
grid sub-commands are allowed:

$PAD grid arrange master

Forces arrangement of the given grid. Any pending layout request for the grid is removed. This can be
useful when an application has done several grid configuration and wants them to take effect
immediately. Normally, grid arrangement is done at "idle" times.

Page 79

$PAD grid bbox master column row

The bounding box (in pixels) is returned for the space occupied by the grid position indicated by column
and row. The return value consists of 4 integers. The first two are the pixel offset from the master
window (x then y) of the top-left corner of the grid cell, and the second two are the width and height of
the cell.

$PAD grid columnconfigure master index [-option value...]

Query or set the column properties of the index column of the geometry master, master. The valid
options are -minsize and -weight. The -minsize option sets the minimum column size, in screen units,
and the -weight option (a floating point value) sets the relative weight for apportioning any extra spaces
among columns. If no value is specified, the current value is returned.

$PAD grid configure slave [slave ...] [options]

The arguments consist of one or more slaves followed by pairs of arguments that specify how to manage
the slaves. The characters -, x and ^, can be specified instead of a window name to alter the default
location of a slave, as described in the ``RELATIVE PLACEMENT'' section, below. If any of the slaves
are already managed by the grid then any unspecified options for them retain their previous values rather
than receiving default values. The following options are supported:

-column n
Insert the slave so that it occupies the nth column in the grid. Column numbers start with 0. If
this option is not supplied, then the slave is arranged just to the right of previous slave
specified on this call to grid, or column "0" if it is the first slave. For each x that immediately
precedes the slave, the column position is incremented by one. Thus the x represents a blank
column for this row in the grid.

-columnspan n

Insert the slave so that it occupies n columns in the grid. The default is one column, unless the
slave is followed by a -, in which case the columnspan is incremented once for each
immediately following -.

-in other

Insert the slave(s) in the grid object given by other (which must be an existing grid).

-padx amount
The amount specifies how much horizontal external padding to leave on each side of the
slave(s). The amount defaults to 0.

-pady amount
The amount specifies how much vertical external padding to leave on the top and bottom of
the slave(s). The amount defaults to 0.

-row n
Insert the slave so that it occupies the nth row in the grid. Row numbers start with 0. If this
option is not supplied, then the slave is arranged on the same row as the previous slave
specified on this call to grid, or the first unoccupied row if this is the first slave.

-rowspan n
Insert the slave so that it occupies n rows in the grid. The default is one row. If the next grid

Page 80

command contains ^ characters instead of slaves that line up with the columns of this slave,
then the rowspan of this slave is extended by one.

-sticky style
If a slave's parcel is larger than its requested dimensions, this option may be used to position
(or stretch) the slave within its cavity. Style is a string that contains zero or more of the
characters n, s, e or w. The string can optionally contains spaces or commas, but they are
ignored. Each letter refers to a side (north, south, east, or west) that the slave will "stick" to.
If both n and s (or e and w) are specified, the slave will be stretched to fill the entire height (or
width) of its cavity. The sticky option subsumes the combination of -anchor and -fill that is
used by pack. The default is {}, which causes the slave to be centered in its cavity, at its
requested size.

$PAD grid forget slave [slave ...]

Removes each of the slaves from their grid.

$PAD grid info slave

Returns a list whose elements are the current configuration state of the slave given by slave in the same
option-value form that might be specified to grid configure. The first two elements of the list are ``-in
master'' where master is the slave's master.

$PAD grid location master x y

Given x and y values in screen units relative to the master object, the column and row number at that x
and y location is returned. For locations that are above or to the left of the grid, -1 is returned.

$PAD grid rowconfigure master index [-option value...]

Query or set the row properties of the index row of the geometry master, master. The valid options are -
minsize and -weight. Minsize sets the minimum row size, in screen units, and weight sets the relative
weight for apportioning any extra spaces among rows. If no value is specified, the current value is
returned.

$PAD grid size master

Returns the size of the grid (in columns then rows) for master. The size is determined either by the slave
occupying the largest row or column, or the largest column or row with a minsize or weight.

$PAD grid slaves master [-option value]

If no options are supplied, a list of all of the slaves in master are returned. Option can be either -row or -
column which causes only the slaves in the row (or column) specified by value to be returned.

Relative Placement
The grid command contains a limited set of capabilities that permit layouts to be created without specifying the row
and column information for each slave. This permits slaves to be rearranged, added, or removed without the need
to explicitly specify row and column information.

When no column or row information is specified for a slave, default values are chosen for column, row,
columnspan and rowspan at the time the slave is managed. The values are chosen based upon the current layout of
the grid, the position of the slave relative to other slaves in the same grid command, and the presence of the
characters -, ^, and ^ in grid command where slave names are normally expected.

Page 81

- This increases the columnspan of the slave to the left. Several -'s in a row will successively increase the
columnspan. S - may not follow a ^ or a x.
x This leaves an empty column between the slave on the left and the slave on the right.
^ This extends the rowspan of the slave above the ^'s in the grid. The number of ^'s in a row must match the
number of columns spanned by the slave above it.

Restrictions on Master Windows
In pad, the master for each slave is the slave's parent (which is a grid object). This means if an object belongs to an
existing group then it cannot be added to a grid.

Differences Between Pad++ and TK Grid Commands
• The -ipadx and -ipady grid item configuration options are not available in pad.
• Master window geometry propagation flag is not available in pad.
• The parent-child and stacking restrictions and rules for master and slave items are not supported in pad

(slaves can only be in the master group).
• If the grid is not positioned then it places itself around its first item. Once all grid items have been

positioned the grid bounding box will be computed to enclose them all.
• Added the arrange command for forcing grid arrangement.
• Items that are removed from grids are not unmapped.

Examples
1) put four objects in a 2x2 grid with 10 pixels horizontal and vertical pading:

set obj1 [.pad create rectangle 0 0 50 50]
set obj2 [.pad create rectangle 50 50 100 100]
set obj3 [.pad create rectangle 100 100 150 150]
set obj4 [.pad create rectangle 150 150 200 200]
set thegrid [.pad create grid $obj1 $obj2 -padx 10 -pady 10]
.pad grid $obj3 $obj4 -in $thegrid -row 1 -padx 10 -pady 10

2) read objects from pad files in a directory and place them in a Nx2 grid (this can be useful for creating palettes):

proc read_files {PAD dir} {
set objs ""

Go though list of files
foreach file [glob $dir/*.pad] {

Read file and put all its object in a group (Pad_ObjectList will be
set to list of objects read from file).

$PAD read $file
set group [$PAD create group -members $Pad_ObjectList]
lappend objs $group

}
return $objs

}

Page 82

proc create_palette {PAD objs} {
Create the grid object

set thegrid [$PAD create grid]
set row 0
set col 0

Go through objects and place them two per row
foreach obj $objs {

Add obj to the grid
$PAD grid $obj -in $thegrid -row $row -column $col -padx 10 -pady 5

Set row and column position for next object
if {$col == 0} {

incr col
} else {

set col 0
incr row

}
}

Have the grid arrange itself now
$PAD grid arrange $thegrid

return $thegrid
}

create_palette .pad [read_files .pad $env(PADHOME)/draw/scrapbook]

Alternatively,

proc create_palette {PAD objs} {
create the grid object
set thegrid [$PAD create grid]

go through list of objects and place them two per row
set numobjs [llength $objs]
for {set i 0} {$i < $numobjs} {incr i 2} {

set obj1 [lindex $objs $i]
if {$i < [expr $numobjs-1]} {

set obj2 [lindex $objs [expr $i+1]]
} else {

set obj2 ""
}
$PAD grid $obj1 $obj2 -in $thegrid -padx 10 -pady 5

}

$PAD grid arrange $thegrid
return $thegrid

}

create_palette .pad [read_files .pad $env(PADHOME)/draw/scrapbook]

3) Draw horizontal and vertical grid lines and a bounding rectangle for an existing grid. Make a group for the line
objects and the existing grid. Assume the grid is a normal MxN table (i.e. all rows have N columns and all columns
have M rows).

proc create_gridlines { PAD thegrid } {
Get bounding box, width and height and location of the grid

set gbbox [$PAD bbox $thegrid]

Page 83

set gwidth [expr [lindex $gbbox 2] - [lindex $gbbox 0]]
set gheight [expr [lindex $gbbox 3] - [lindex $gbbox 1]]
set gx [lindex $gbbox 0]
set gy [lindex $gbbox 1]

Get number of rows and columns
set numrows [lindex [$PAD grid size $thegrid] 1]
set numcols [lindex [$PAD grid size $thegrid] 0]

Create the bounding rectangle
set grect [eval $PAD create rectangle $gbbox]

set items "$grect"
set scale [$PAD scale $thegrid]

Create horizontal lines by looking at the <r, 0> grid elemments.
for {set r 1} {$r < $numrows} {incr r} {

Get location of the <r, 0> element (including padding)
set rinfo [$PAD grid bbox $thegrid 0 $r]
set x1 [expr [lindex $rinfo 0]*$scale + $gx]

Transform the y coord for pad (grid's is from top left corner)
set y1 [expr ($gheight - [lindex $rinfo 1]*$scale) + $gy]
set x2 [expr $x1 + $gwidth]
set y2 $y1
lappend items [$PAD create line $x1 $y1 $x2 $y2 -tags gridrowline_$thegrid]

}

Draw vertical lines by looking at the <0, c> elements
for {set c 1} {$c < $numcols} {incr c} {

set cinfo [$PAD grid bbox $thegrid $c 0]
set x1 [expr [lindex $cinfo 0]*$scale + $gx]
set y1 [expr ($gheight - [lindex $cinfo 1]*$scale) + $gy]
set x2 $x1
set y2 [expr $y1 - $gheight]
lappend items [$PAD create line $x1 $y1 $x2 $y2 -tags gridcolline_$thegrid]

}

Create a group for all the grid lines
set glines [$PAD create group -members $items -divisible 0 \

 -tags gridlines_$thegrid]

Create a group for the lines and the grid
set newgrp [$PAD create group -members "$glines $thegrid" -tags grid_$thegrid \

-divisible 1]

return $newgrp
}

set thegrid [create_palette .pad [read_files .pad ./draw/scrapbook]]
create_gridlines .pad $thegrid

Group Items
Items of type group are special items that group other items. Group items do not have any visual appearance, but
rather are used just for creating structure. Groups are implemented very efficiently, and may be hierarchical (i.e.,
contain other groups). Modifying the position of a group implicitly affects all of the members of the group,
recursively. Pad++ also supports "tags" which are implicit way of grouping items - but this only works for events.

Page 84

That is, giving several items the same tag allows them all to respond to the same event handlers. Groups explicitly
bring items together. Group members are rendered sequentially in the display list. That is, no other objects can
appear inbetween group members - they are always above or below all the group members. Raising or lowering a
group object raises or lowers all the group members. Raising or lowering a group member raises or lowers the
member within the group.

Groups automatically resize themselves to contain all of their members - thus adding, removing, or repositioning a
member implicitly changes the size of the group. See the pad addgroupmember and removegroupmember
commands and the -member itemconfigure option below for setting group membership, and the getgroup
command for testing group membership.

When an event hits a group, it normally passes through the group object to its members. However, it is possible to
configure a group object so that it grabs the events and does not pass them through. See the -divisible flag.

Groups are created with widget commands of the following form:

pathName create group [option value option value ...]

There may be any number of option-value pairs, each of which sets one of the configuration options for the item.
These same option-value pairs may be used in itemconfigure widget commands to change the item's configuration.
The following options are supported for groups:

-divisible [16] True if events go through a group to its members
-members [38] The list of members of a group

HTML Items
Items of type html are compound items representing the specified html file. (HTML is HyperText Markup
Language. Based on SGML, HTML is most commonly known as the language describing items for the World-Wide
Web.) HTML items know about the internet and will automatically fetch a file from a URL (Universal Resource
Locator) as well as in-line images. URL’s may also specify local files. When the html data is fetched, it is parsed
and the HTML item is created which contains a method for rendering the page. HTML anchors are created as
separate items which may have events bound to them. HTML items are an extension of group items, and thus
have several of the same options as groups.

There is a Tcl file (draw/html.tcl) which describes default event bindings for html items which follow hyperlinks,
and lay them out with scale. See the end of the description of HTML items for a description of html anchors.

HTML items are created with widget commands of the following form:

pathName create html [option value option value ...]

There may be any number of option-value pairs, each of which sets one of the configuration options for the item.
These same option-value pairs may be used in itemconfigure widget commands to change the item's configuration.
The following options are supported for html items:

-border [10] Specifies border color of item
-borderwidth [11] Specifies width of border
-divisible [16] True if events go through a group to its members
-donescript [17] A script to evaluate when a background action has completed
-errorscript [19] A script to evaluate when a background action has an error
-fill [23] Specifies fill color of item
-font [24] Specifies font to use for text
-htmlanchors [28] The anchors associated with an HTML page
-members [38] The list of members of a group
-updatescript [62] A script to evaluate when a background action has made progress
-url [63] The URL associated with an item

Page 85

Note that when the width of an html page is changed, the page is re-laid out, and the height of the page could
change as a result.

HTML Anchors
The anchors are special Pad++ items of type "htmlanchor". They are automatically grouped with the HTML
object. As such, they can not be deleted independently, and are automatically deleted when the html object they are
associated with is deleted. Some anchors have multiple components (i.e., and image and some text). In this case,
they all have the same URL, and changing the pen color of one component automatically changes the pen color of
the other components.

Anchors may be configured with the itemconfigure command. The following options are supported for html
anchors:

-html [27] The HTML item associated with an htmlanchor
-image [29] Image data associated with item
-ismap [31] True if an htmlanchor is an image map
-state [53] State of an item (such as visited, unvisited, etc.)
-url [63] The URL associated with an item

Image Items
Items of type image appear on the display as color images. Images are created with widget commands of the
following form:

pathName create image [option value option value ...]

There may be any number of option-value pairs, each of which sets one of the configuration options for the item.
These same option-value pairs may be used in itemconfigure widget commands to change the item's configuration.
The following options are supported for images:

-dither [15] Render with dithering
-image [29] Image data associated with item (allocated by image alloc)

-writeformat [69] Controls whether disk-based item is written out by copy or reference

KPL Items
Items of type Kpl provide a method for creating an item with a user-described render method. Sometimes the
Pad++ items available do not have exactly what you want, or you’d like a complex item consisting of several
primitives. Rather than create several different Pad++ items and group them together, a single Kpl item can be
created with a kind of display list.

Kpl is a language (designed at New York University by Ken Perlin, et. al.) that is very simple, but extremely fast. It
is the best language we found for writing interpreted code for rendering quickly. In fact, Kpl has a byte-compiler
which makes it faster. Some simple experiments have shown it to be roughly 15 times slower than C for simple
math (compared to tcl which is typically about 1,000 times slower than C). Because Kpl is a general-purpose
language, it can be used for on-the-fly calculations as well as render calls. Pad++ supplies several render that
available through Kpl that allow a Kpl object to render fairly complex objects.

Kpl is a stack-based post-fix language (much like PostScript). Some basic documentation is available with the
Pad++ release in doc/kpl.troff. See the section in this document on the KPL-PAD++ INTERFACE for a description
of how to access Kpl through Pad++, and what Pad++ routines are available from Kpl.

Kpl items are created with widget commands of the following form:

pathName create kpl [option value option value ...]

Page 86

There may be any number of option-value pairs, each of which sets one of the configuration options for the item.
These same option-value pairs may be used in itemconfigure widget commands to change the item's configuration.
The following special options are supported for kpl objects:

-bb [9] A KPL script that gets evaluated to specify the bounding box of an item

Note that all coordinates in Kpl are specified in pixels, and not in the current Pad++ units. An example follows that
creates a Kpl item that draws a brown triangle. In this case, the Kpl code is stored in the file triangle.kpl.

Tcl code to load Kpl code and to create
Pad++ Kpl item that draws a brown triangle

kpl eval 'triangle.kpl source
set pen [.pad alloccolor brown]
.pad create kpl -bb {-10:-10 110:110} -renderscript {draw_triangle}

/* Kpl code (in a separate file)
 to draw a brown triangle */

{
'pen tcl_get -> Pen
Pen setcolor
3 setlinewidth
newpath

0:0 moveto
100:0 lineto
50:100 lineto
0:0 lineto

stroke
} -> draw_triangle

Label Items
Label items are widgets that simply display some text with a background color. They have no behavior. Labels are
created with widget commands of the following form:

pathName create label [option value option value ...]

Labels are one of several widgets that are designed to mirror the functionality and usage of the standard widgets in
Java’s Abstract Windowing Toolkit (AWT). When labels are created, they automatically get the tag "Label".

The following options are supported for labels:

-fill [23] Specifies fill color of label
-font [24] Specifies font to use for text
-pen [45] Specifies pen color of label
-text [56] The text of the label

Line Items
Items of type line appear on the display as one or more connected line segments. Lines are created with widget
commands of the following form:

pathName create line [x1 y1... xn yn [option value option value ...]]

The arguments x1 through yn give the coordinates for a series of two or more points that describe a series of

Page 87

connected line segments. After the coordinates there may be any number of option-value pairs, each of which sets
one of the configuration options for the item. These same option-value pairs may be used in itemconfigure widget
commands to change the item's configuration. If a line is created without any points, it will not be rendered until
some points are added with the coords command. The following options are supported for lines:

-arrow [7] Whether to draw arrow heads with this item
-arrowshape [8] The shape of drawn arrow heads
-capstyle [12] Specifies how to draw line ends
-joinstyle [32] Specifies how to draw the joints within multi-point lines
-noisedata [42] Specifies parameters to render item with noise
-pen [45] Specifies pen color of item
-penwidth [46] Specifies width of pen

Menu Items
Menu items are widgets that are elements of menubar and are used to implement a pull-down menu. They contain a
list of menuitems or checkboxmenuitems. When they are pressed, the member menuitems and checkboxmenuitems
are displayed and may be selected. Menus are created with widget commands of the following form:

pathName create menu [option value option value ...]

Menus are one of several widgets that are designed to mirror the functionality and usage of the standard widgets in
Java’s Abstract Windowing Toolkit (AWT). When menus are created, they automatically get the tag "Menu".
Menus have default event handlers which define their behavior. These event handlers are defined on the tag
"Menus" for the "Run" event mode. See the section on Default Bindings for more details about the event bindings.

The following options are supported for menus:

-fill [23] Specifies fill color of menu
-font [24] Specifies font to use for text
-members [38] The list of members of a menu
-pen [45] Specifies pen color of menu
-relief [49] Specifies how border should be rendered (raised, flat, sunken, ridge, groove)
-state [53] State of the menu (normal, active, or disabled)
-text [56] The text of the menu

The following example shows how several pull-down menus can be created that consist of menuitems and
checkboxmenuitems. The menus that are created are then put in a menubar.

set f1 [.pad create menuitem -text "New..."]
set f2 [.pad create menuitem -text "Open..."]
set f3 [.pad create menuitem -text "Save"]
set f4 [.pad create menuitem -text "Save As"]
set f5 [.pad create menuitem -text "Exit"]

set e1 [.pad create checkboxmenuitem -text "Cut"]
set e2 [.pad create menuitem -text "Copy"]
set e3 [.pad create menuitem -text "Paste"]

set g1 [.pad create menuitem -text "Content"]
set g2 [.pad create menuitem -text "Index"]
set g3 [.pad create menuitem -text "About"]

set m1 [.pad create menu -members "$f1 $f2 $f3 $f4 $f5" -text "File"]
set m2 [.pad create menu -members "$e1 $e2 $e3" -text "Edit"]
set m3 [.pad create menu -members "$g1 $g2 $g3" -text "Help"]

Page 88

.pad create menubar -members "$m1 $m2 $m3" -height 30

Menubar Items
Menubar items are widgets that define a pull-down menu. They contain a list of menus. When the consituent
menus are pressed, their member menuitems and checkboxmenuitems are displayed and may be selected. Menubars
are created with widget commands of the following form:

pathName create menubar [option value option value ...]

Menubars are one of several widgets that are designed to mirror the functionality and usage of the standard widgets
in Java’s Abstract Windowing Toolkit (AWT). When menubars are created, they automatically get the tag
"MenuBar". Menubars have no default event handlers which define their behavior.

The following options are supported for menubars:

-fill [23] Specifies fill color of menu
-members [38] The list of members of a menu

See the documention for Menu items for some example code that uses menubars.

Menuitem Items
Menutem items are widgets that are elements of pull-down or pop-up menus. When they are a member of a menu,
they can be activated by moving the mouse over them and letting go. When a menuitem is activated, an associated
script will be fired. Menuitems are created with widget commands of the following form:

pathName create menuitem [option value option value ...]

Menuitems are one of several widgets that are designed to mirror the functionality and usage of the standard
widgets in Java’s Abstract Windowing Toolkit (AWT). When menuitems are created, they automatically get the
tag "MenuItem". Menuitems have default event handlers which define their behavior. These event handlers are
defined on the tag "MenuItem" for the "Run" event mode. See the section on Default Bindings for more details
about the event bindings.

The following options are supported for menuitems:

-command [14] Callback that is executed when menuitem is pressed
-fill [23] Specifies fill color of menuitem
-font [24] Specifies font to use for text
-pen [45] Specifies pen color of menuitem
-relief [49] Specifies how border should be rendered (raised, flat, sunken, ridge, groove)
-state [53] State of the menuitem normal, active, or disabled)
-text [56] The text of the menuitem

See the documention for Menu and Choicemenu items for some example code that uses menuitems.

Oval Items
Items of type oval appear as ovals on the display. Each oval may have an outline (pen color), a fill, or both. Ovals
are created with widget commands of the following form:

pathName create oval [x1 y1 x2 y2 [option value option value ...]]

The arguments x1, y1, x2, and y2 give the coordinates of two diagonally opposite corners of the oval. If an oval is

Page 89

created without any points, it will not be rendered until some points are added with the coords command. After
the coordinates there may be any number of option-value pairs, each of which sets one of the configuration options
for the item. These same option-value pairs may be used in itemconfigure widget commands to change the item's
configuration. The following options are supported for ovals:

-fill [23] Specifies fill color of item
-joinstyle [32] Specifies how to draw the joints within multi-point lines
-pen [45] Specifies pen color of item
-penwidth [46] Specifies width of pen

Pad Items
Each pad widget implicitly defines a special "pad" item which always has the id "1". This is a special item which
can get events and has a few itemconfigure options. It may not be explicitly created or deleted. The valid options
are:

-view [65] Specifies the view this item sees
-visiblelayers [67]The layers that are visible within this view (just for portals and surface, item #1)

Panel Items
Panel items are widgets that are used to group a collection of items. They are similar to groups, except they have a
background color, and they are fixed size. Panels are created with widget commands of the following form:

pathName create panel [[x1 y1 x2 y2] option value option value ...]

Panels are one of several widgets that are designed to mirror the functionality and usage of the standard widgets in
Java’s Abstract Windowing Toolkit (AWT). When panels are created, they automatically get the tag "Panel".

Unlike group items, panels do not set their size based on their contents. Rather, they are fixed size as specified by
the command line coordinates, or by the -width [68] and -height [26] itemconfigure options. Panels have
their own coordinate system where (0, 0) specifies the panels lower left corner. Adding items to a panel adds them
relative to the panel’s coordinate system.

The following options are supported for panels:

-divisible [16] True if events go through the panel to its members
-fill [23] Specifies fill color
-members [38] The list of members of the panel

Also, see the addgroupmember [2] and removegroupmember [72] commands that can be used to add and
remove items from the panel.

Polygon Items
Items of type polygon appear as polygonal regions on the display. Each polygon may have an outline (pen color), a
fill, or both. Polygon are created with widget commands of the following form:

pathName create polygon [x1 y1... xn yn [option value option value ...]]

The arguments x1, y1, ..., xn, and yn specify the coordinates of the vertices of the polygon. If a polygon is created
without any points, it will not be rendered until some points are added with the coords command. After the
coordinates there may be any number of option-value pairs, each of which sets one of the configuration options for
the item. These same option-value pairs may be used in itemconfigure widget commands to change the item's
configuration. The following options are supported for polygons:

Page 90

-fill [23] Specifies fill color of item
-joinstyle [32] Specifies how to draw the joints within multi-point lines
-pen [45] Specifies pen color of item
-penwidth [46] Specifies width of pen

Portal Items
Portals are a special type of item in Pad++ that sit on the Pad++ surface with a view onto a different location.
Because each portal has its own view, a surface might be visible at several locations, each at a different
magnification, through various portals. In addition, portals can look onto surfaces of other Pad++ widgets. The
surface that the portal is looking onto is called that portal's lookon. Portal items are created with widget commands
of the following form:

pathName create portal [x1 y1 x2 y2 ... [option value option value ...]]

If two points are specified, then the portal will be rectangular where those two points specify the lower left and
upper right coordinates of the portal. If more than two points are specified, then the portal will be polygonal shaped
by those points. If a portal is created without any points, it will not be rendered until some points are added with the
coords command. There may be any number of option-value pairs, each of which sets one of the configuration
options for the item. These same option-value pairs may be used in itemconfigure widget commands to change the
item's configuration. The following options are supported for text items:

-border [10] Specifies border color of item
-borderwidth [11] Specifies width of border
-fill [23] Specifies fill color of item
-font [24] Specifies font to use for text
-lookon [36] Specifies the pad widget this item sees
-pen [45] Specifies pen color of item
-relief [49] Specifies how border should be rendered (raised, flat, sunken, ridge, groove)
-title [59] Some items only: Title of an item
-view [65] Specifies the view this item sees
-visiblelayers [67]The layers that are visible within this view (just for portals and surface, item #1)

Note that it is impossible to directly change an item’s parameters when it is viewed within a portal. That is, you can
not have an object that has a -minsize of 20% in the top-level view, but a -minsize of 0% within a portal. One
(inelegant) workaround to this is to use an alias. You could fmake an alias of the original object and put it in a
different place. Put what ever min/maxsize you want on the alias, and have the portal look onto the alias.

Rectangle Items
Items of type rectangle appear as rectangular regions on the display. Each rectangle may have an outline (pen
color), a fill, or both. Rectangles are created with widget commands of the following form:

pathName create rectangle [x1 y1 x2 y2 [option value option value ...]]

The arguments x1, y1, x2, and y2 give the coordinates of two diagonally opposite corners of the rectangle If a
rectangle is created without any points, it will not be rendered until some points are added with the coords
command. After the coordinates there may be any number of option-value pairs, each of which sets one of the
configuration options for the item. These same option-value pairs may be used in itemconfigure widget commands
to change the item's configuration. The following options are supported for rectangles:

-fill [23] Specifies fill color of item
-joinstyle [32] Specifies how to draw the joints within multi-point lines
-pen [45] Specifies pen color of item

Page 91

-penwidth [46] Specifies width of pen

Scrollbar Items
Scrollbar items are widgets that are used to interactively select a numeric value within a range. Whenever the value
is changed, an associated script will be fired. Scrollbars are created with widget commands of the following form:

pathName create scrollbar [option value option value ...]

Scrollbars are one of several widgets that are designed to mirror the functionality and usage of the standard widgets
in Java’s Abstract Windowing Toolkit (AWT). When scrollbars are created, they automatically get the tag
"Scrollbar". Scrollbars have default event handlers which define their behavior. These event handlers are defined
on the tag "Scrollbar" for the "Run" event mode. See the section on Default Bindings for more details about the
event bindings.

The following options are supported for scrollbars:

-command [14] Callback that is executed when scrollbar value is changed
-fill [23] Specifies fill color of scrollbar
-from [25] Smallest value that scrollbar takes
-linesize [34] Amount scrollbar should change to represent a line change
-orientation [43] Orientation of scrollbar (horizontal or vertical.)
-pagesize [44] Amount scrollbar should change to represent a page change
-to [60] Largest value that scrollbar takes
-value [64] Current value of scrollbar

Spline Items
Items of type spline appear on the display as one or more bezier curves joined end to end, so the last point of the
one curve is used as the first point of the next. Splines are displayed as smooth curves at any magnification. They
are rendered in more detail when they are larger. It is possible to create a fixed approximation to a spline with the
spline2line command. In addition, it is possible to generate a spline that approximates a multi-segmented line
with the line2spline command. A bezier curve is defined using four points - the start and end point for the
curve, and two control points that indicate the path that the curve follows. For example:

For a spline made from a single bezier segment, the points are given as follows:

<start-x> <start-y> <c1-x> <c1-y> <c2-x> <c2-y> <end-x> <end-y>

Start
point

Control
point 1

Control
point 2

End
point

Page 92

That is, first the start point is given, followed by the first control point, followed by the second control point and
finishing with the end point for the curve. For example, you can create a simple spline using:

.pad create spline 0 0 10 10 20 10 30 0

here (0, 0) defines the start of the curve. (10, 10) is the first control point, (20, 10) is the second control point, and
the curve ends at (30, 0).

Splines are created with widget commands of the following form:

pathName create spline x1 y1... xn yn [option value option value ...]

The arguments x1 through yn give the coordinates for a series of one or more splines. Each point is specified by two
coordinates. When specifying a spline made from two or more bezier curves, the end point of the first curve is used
as the start point for the second, so the second curve only requires an additional three points (two control points and
an end point). In general a spline of N bezier curves requires 3N+1 points (6N+2 coordinates). This represents a
start point and then three points for each curve.

For convenience, if the end point of the last curve segment in a spline is omitted, Pad++ assumes that the curve
should be 'closed' - it uses the start point of the first curve as the end point for the last curve, creating a closed
shape. For closed shapes, therefore, you should provide 3N points (6N coordinates).

After the coordinates there may be any number of option-value pairs, each of which sets one of the configuration
options for the item. These same option-value pairs may be used in itemconfigure widget commands to change the
item's configuration. The following options are supported for lines:

-arrow [7] Whether to draw arrow heads with this item
-arrowshape [8] The shape of drawn arrow heads
-capstyle [12] Specifies how to draw line ends
-joinstyle [32] Specifies how to draw the joints within multi-point lines
-pen [45] Specifies pen color of item
-penwidth [46] Specifies width of pen

TCL Items
Items of type tcl are really a simple of way of having user-describable item. A Tcl item really consists of two Tcl
scripts to render an item procedurally (one to render, and the other to compute the bounding box.) The render script
can render by calling the pad widget with the various drawing routines (see drawline, drawtext, setcolor,
setlinewidth.) Tcl's are created with widget commands of the following form:

pathName create tcl [option value option value ...]

There may be any number of option-value pairs, each of which sets one of the configuration options for the item.
These same option-value pairs may be used in itemconfigure widget commands to change the item's configuration.
The following options are supported for tcl objects:

-bb [9] A script that gets evaluated to specify the bounding box of an item

Text Items
A text item displays a string of characters on the screen in one or more lines. There is a single custom "vector" font.
Text items are created at a default size of one pixel high. Their size can be changed with the scale command or
the -position itemconfigure option.

INDICES
Many of the commands for text take one or more indices as arguments. An index is a string used to indicate a

Page 93

particular place within a text, such as a place to insert characters or one endpoint of a range of characters to delete.
Indices have the syntax:

base modifier modifier modifier ...

Where base gives a starting point and the modifiers adjust the index from the starting point (e.g. move
forward or backward one character). Every index must contain a base, but the modifiers are optional.

The base for an index must have one of the following forms:

line.char

Indicates char'th character on line line. Lines are numbered from 0. Notice that this is
different than the Tk text widget. Within a line, characters are numbered from 0.

line.end

Indicates the last character on line line. Lines are numbered from 0.

char

Indicates the char'th character from the beginning of the file (starting at 0).

@x,y

Indicates the character that covers the pixel whose x and y coordinates within the text's
window are x and y.

end

Indicates the last character in the text.

mark

Indicates the character just after the mark whose name is mark.

If modifiers follow the base index, each one of them must have one of the forms listed below. Keywords
such as chars and wordend may be abbreviated as long as the abbreviation is unambiguous. Modifiers
must have one of the following forms:

+ count chars

Adjust the index forward by count characters, moving to later lines in the text if necessary. If
there are fewer than count characters in the text after the current index, then set the index to
the last character in the text. Spaces on either side of count are optional.

- count chars

Adjust the index backward by count characters, moving to earlier lines in the text if necessary.
If there are fewer than count characters in the text before the current index, then set the index
to the first character in the text. Spaces on either side of count are optional.

+ count lines

Page 94

Adjust the index forward by count lines, retaining the same character position within the line.
If there are fewer than count lines after the line containing the current index, then set the index
to refer to the same character position on the last line of the text. Then, if the line is not long
enough to contain a character at the indicated character position, adjust the character position
to refer to the last character of the line. Spaces on either side of count are optional.

- count lines

Adjust the index backward by count lines, retaining the same character position within the
line. If there are fewer than count lines before the line containing the current index, then set
the index to refer to the same character position on the first line of the text. Then, if the line is
not long enough to contain a character at the indicated character position, adjust the character
position to refer to the last character of the line. Spaces on either side of count are optional.

linestart

Adjust the index to refer to the first character on the line.

lineend

Adjust the index to refer to the last character on the line.

wordstart

Adjust the index to refer to the first character of the word containing the current index. A
word consists of any number of adjacent characters that are letters, digits, or underscores, or a
single character that is not one of these.

wordend

Adjust the index to refer to the character just after the last one of the word containing the
current index. If the current index refers to the last character of the text then it is not modified.

If more than one modifier is present then they are applied in left-to-right order. For example, the index
"end - 1 chars" refers to the next-to-last character in the text and "insert wordstart - 1
c" refers to the character just before the first one in the word containing the insertion cursor.

MARKS
The second form of annotation in text widgets is a mark. Marks are used for remembering particular places in a text.
They have names and they refer to places in the file, but a mark isn't associated with particular characters. Instead, a
mark is associated with the gap between two characters. Only a single position may be associated with a mark at
any given time. If the characters around a mark are deleted the mark will still remain; it will just have new neighbor
characters. In contrast, if the characters containing a tag are deleted then the tag will no longer have an association
with characters in the file. Marks may be manipulated with the mark sub-command, and their current locations
may be determined by using the mark name as an index in widget commands.

One mark has special significance. The mark insert is associated with the insertion cursor. The mark point is an
synonym for insert. This special mark may not be unset.

USAGE

Text items are supported by the Pad++ text command. Text items are created with widget commands of the
following form:

Page 95

pathName create text [option value option value ...]

There may be any number of option-value pairs, each of which sets one of the configuration options for the item.
These same option-value pairs may be used in itemconfigure widget commands to change the item's configuration.
The following options are supported for text items:

-editable [18] True if text item is editable with default event handlers (default is false)
-font [24] Specifies font to use for text
-pen [45] Specifies pen color of item
-text [56] The text of any item containing text

Note that when the -width or -height of a text item is set, the text item is clipped to those dimensions rather than
being squashed or stretched as most items are.

Also, see the text [91] command that can be used to manipulate text items.

Text items have default event bindings which can be used for emacs-style editing of them. See the section on
Default Bindings for more info.

Textfile Items
A textfile item displays a string of characters on the screen in one or more lines as with text items, but the text is
loaded in from a file. Textfile items are supported by the Pad++ text command. Textfile items are created with
widget commands of the following form:

pathName create textfile [option value option value ...]

There may be any number of option-value pairs, each of which sets one of the configuration options for the item.
These same option-value pairs may be used in itemconfigure widget commands to change the item's configuration.
The following options are supported for text items:

-file [22] File an item should be defined by
-font [24] Specifies font to use for text
-pen [45] Specifies pen color of item
-text [56] (Read-only) The text of any item containing text
-writeformat [69] Controls whether disk-based item is written out by copy or reference

Note that when the -width or -height of a textfile item is set, the textfile item is clipped to those dimensions rather
than being squashed or stretched as most items are.

Also, see the text [91] command that can be used to manipulate text items.

Text items have default event bindings which can be used for emacs-style editing of them. See the section on
Default Bindings for more info.

Textarea Items
Textarea items are widgets that are used to enter a free form multi-line block of text. They can be edited with emacs-
style keys, and copied from and paste to with the mouse. They have horizontal and vertical scrollbars that can be
used to edit a larger block of text than can fit in the window. Textareas are created with widget commands of the
following form:

pathName create textarea [option value option value ...]

Textareas are one of several widgets that are designed to mirror the functionality and usage of the standard widgets
in Java’s Abstract Windowing Toolkit (AWT). When textareas are created, they automatically get the tag
"Textarea". Textareas have default event handlers which define their behavior. These event handlers are defined

Page 96

on the tag "Textarea" for the "Run" event mode. See the section on Default Bindings for more details about the
event bindings.

The following options are supported for textareas:

-editable [18] True if textarea is editable (default is true)
-fill [23] Specifies fill color of textarea
-font [24] Specifies font to use for text
-pen [45] Specifies pen color of textarea
-text [56] The whole text within the textarea

Also, see the text [91] command that can be used to manipulate textarea items.

Text items have default event bindings which can be used for emacs-style editing of them. See the section on
Default Bindings for more info.

Warning: The scrollbars on textareas are currently not hooked up to the text within the textarea.

Textfield Items
Textfield items are widgets that are used to enter a free-form single line of text. They can be edited with emacs-
style keys, and copied from and paste to with the mouse. Textfields are much like textareas, but are limited to one
line. Textfields are created with widget commands of the following form:

pathName create textfield [option value option value ...]

Textfields are one of several widgets that are designed to mirror the functionality and usage of the standard widgets
in Java’s Abstract Windowing Toolkit (AWT). When textfields are created, they automatically get the tag
"Textfield". Textfields have default event handlers which define their behavior. These event handlers are defined
on the tag "Textfield" for the "Run" event mode. See the section on Default Bindings for more details about the
event bindings.

The following options are supported for textfields:

-editable [18] True if textfield is editable (default is true)
-fill [23] Specifies fill color of textfield
-font [24] Specifies font to use for text
-pen [45] Specifies pen color of textfield
-text [56] The whole text within the textfield

Also, see the text [91] command that can be used to manipulate textfield items.

Text items have default event bindings which can be used for emacs-style editing of them. See the section on
Default Bindings for more info.

Window Items
Window items are widgets that act like top-level windows within Pad++, but with no window dressing. They are
used to group a collection of items. They are similar to frames, except they have no window dressing and no default
event handlers. Windows are created with widget commands of the following form:

pathName create window [[x1 y1 x2 y2] option value option value ...]

Windows are one of several widgets that are designed to mirror the functionality and usage of the standard widgets
in Java’s Abstract Windowing Toolkit (AWT). When windows are created, they automatically get the tag
"Window". Windows have no default event handlers which define their behavior. Windows are basically the
essence of a Frame item type without the window dressing and without the event handlers.

Page 97

Unlike group items, windows do not set their size based on their contents. Rather, they are fixed size as specified
by the command line coordinates, or by the -width [68] and -height [26] itemconfigure options. Windows
have their own coordinate system where (0, 0) specifies the panels lower left corner. Adding items to a window
adds them relative to the window’s coordinate system.

The following options are supported for windows:

-divisible [16] True if events go through the window to its members
-fill [23] Specifies fill color
-members [38] The list of members of the window

Also, see the addgroupmember [2] and removegroupmember [72] commands that can be used to add and
remove items from the window.

Default Bindings

There are several default event bindings in Pad++ written in C++. In addition, the PadDraw sample application has
many event bindings defined in Tcl that may be useful. There are two classes of default event bindings, navigation
and widget bindings.

The navigation bindings allow panning on button 1, and zooming in and out on buttons 2 and 3, respectively. These
bindings are very simple versions and a serious application may want to redefine them. They can be turned on and
off the with -defaultEventHandlers widget configuration option. By default, they are off. The bindings are:

• Pan with button 1:
• <ButtonPress-1> on "all"
• <B1-Motion> on "all"
• <ButtonRelease-1> on "all"

• Zoom in/out with buttons 2/3:
• <ButtonPress-2> on "all"
• <B2-Motion> on "all"
• <ButtonRelease-2> on "all"
• <ButtonPress-3> on "all"
• <B3-Motion> on "all"
• <ButtonRelease-3> on "all"

The widget bindings allow standard interaction with the user interface widgets. These bindings get created the first
time a widget of each type is created. The event bindings are defined on tags of the name of the widget. Widgets
are created with these tags by default, and so these bindings are defined by default. To disable these bindings, just
remove the tag from the widget. The event bindings are defined in the "Run" mode, and so for them to be active, the
Run modifier must be set. This can be done with:

.pad modifier set "Run"

For key bindings to work, the system focus must be set to the pad widget. You can do this with:

focus .pad

The default event bindings are:

• Button widgets:
• <Run-ButtonPress-1> on "Button"
• <Run-B1-Motion> on "Button"

Page 98

• <Run-ButtonRelease-1> on "Button"

• Scrollbar widgets:
• <Run-ButtonPress-1> on "Scrollbar"
• <Run-B1-Motion> on "Scrollbar"
• <Run-ButtonRelease-1> on "Scrollbar"

• TextArea widgets:
• <Run-KeyPress> on "Textarea"
• <Run-ButtonPress-1> on "Textarea"
• <Run-B1-Motion> on "Textarea"
• <Run-ButtonRelease-1> on "Textarea"
• <Run-ButtonPress-2> on "Textarea"
• <Run-B2-Motion> on "Textarea"
• <Run-ButtonRelease-2> on "Textarea"

• TextField widgets:
• <Run-KeyPress> on "Textfield"
• <Run-ButtonPress-1> on "Textfield"
• <Run-B1-Motion> on "Textfield"
• <Run-ButtonRelease-1> on "Textfield"
• <Run-ButtonPress-2> on "Textfield"
• <Run-B2-Motion> on "Textfield"
• <Run-ButtonRelease-2> on "Textfield"

• Frame widgets:
• <Motion> on "Frame"
• <Leave> on "Frame"
• <Run-ButtonPress-1> on "Frame"
• <Run-B1-Motion> on "Frame"
• <Run-ButtonRelease-1> on "Frame"
• <ButtonPress-2> on "Frame"
• <B2-Motion> on "Frame"
• <ButtonRelease-2> on "Frame"
• <ButtonPress-3> on "Frame"
• <B3-Motion> on "Frame"
• <ButtonRelease-3> on "Frame"

Finally, the basic Text item has default event bindings that can be used to edit the text with emacs-style keys. To
use these bindings, the text item must be made editable and given the tag "Text". In addition, the Run mode must
be set, and the focus must be set to the Pad++ widget. An example creation of a text item that uses the handlers is:

.pad create text -text Hello -editable 1 -tags "Text" -anchor nw

.pad modifier set "Run"
focus .pad

• Text items:
• <Run-KeyPress> on "Text"
• <Run-ButtonPress-1> on "Text"
• <Run-B1-Motion> on "Text"
• <Run-ButtonRelease-1> on "Text"
• <Run-ButtonPress-2> on "Text"
• <Run-B2-Motion> on "Text"
• <Run-ButtonRelease-2> on "Text"

Page 99

Global TCL Variables

Pad++ defines several global Tcl variables that are available for use by Tcl applications. They are:

• Pad_Error True during Pad++ background errors.
• Pad_Version Current version of this Pad++ software
• Pad_Write Used in the <Write> event for an application to specify if the system should write out a

specific object or not. (See the write command and the <Write> event in the bind command.)

KPL-Pad++ Interface

As described in the section above on KPL ITEMS, Kpl is a byte-compiled language that comes with Pad++ that is
typically used for creating new objects. It is a general-purpose language, and has the ability to call certain Pad++
rendering routines. Some basic documentation is available with the Pad++ release in doc/kpl.troff.

There are two ways to interact with Kpl. The first is to make a Pad++ Kpl item with a Kpl renderscript (described
above). In this case, every time the item is rendered, the Kpl script will be executed. The second method is to use
the kpl command available directly from Tcl. The kpl command has the following format:

kpl subcommand [args ...]

Where subcommand must be one of the following:

eval string
Byte-compiles and evaluates string as a Kpl script.

push value
Pushes value onto the top of the Kpl stack.

pop
Pops the top element off of the Kpl stack and returns it.

get name
Returns the current value of the Kpl variable, name.

set name value
Sets the Kpl variable name to value.

There are several Kpl commands available for interacting with the Tcl environment, and for rendering directly onto
the Pad++ surface (when within a render callback). They are organized into a few groups as follows:

These commands provide a mechanism for accessing Tcl variables from Kpl.

tclset name value
Sets the global Tcl variable name to value.

tclset2 array_name element value
Sets the global Tcl array array_name(element) to value.

tclget name
Returns the value of the global Tcl variable name.

Page 100

tclget2 array_name element
Returns the value of the global Tcl array array_name(element).

tcleval tcl_string
Evaluates the Tcl string tcl_string.

These commands provide basic drawing capability.

drawborder llcorner urcorner width border relief
Draws a 3D border within the rectangle specified by llcorner and urcorner (where each of those are 2D
vectors). Width specifies the zoomable width of the border. Border specifies the border color and must
have been previously allocated with the Pad++ allocborder command. Relief specifies the style of
border, and must be one of: "raised", "flat", "sunken", "groove", "ridge", "barup", or
"bardown".

drawline vector
Draws a line specified by vector. As Kpl vectors may be up to 16-dimensional, this vector can specify
up to 8 (x, y) points. This routine will draw a line connecting as many points as are specified within
vector.

drawimage imagetoken x y
Draws the image specified by imagetoken at the point (x, y). (Also see image commands as well as
the description of image items). This command can only be called within a render callback.

drawpolygon vector
Draws a polygon specified by vector. As Kpl vectors may be up to 16-dimensional, this vector can
specify up to 8 (x, y) points. This routine will draw a closed polygon connecting as many points as are
specified within vector.

drawtext text position
Draws text. Text specifies the text to be drawn. Position specifies the where the text gets drawn.
Position is a two-dimensional vector specifying the (x, y) position. (Also see the KPL setcolor,
setfont, and setfontheight commands.)

getlevel
Returns the current refinement level.

getsize
Returns the current size of the object, where size is the larger of the width and height.

renderitem tagOrId

During a render callback triggered by the -renderscript option, this function actually renders the object.
During a -renderscript callback, all the items specified by tagOrId are rendered (and the current item is
not rendered unless it is in tagOrId). This function may only be called during a render callback.

setabslinewidth width
Sets the current drawing with to an absolute width. All lines will be drawn with this width. This is an
absolute width, so this specifies the width independent of the current view. I.e., the line width will not
change as the view changes.

setcapstyle capstyle

Sets the capstyle of lines for drawing. Capstyle may be any of: "butt", "projecting", or "round".

Page 101

setcolor color
Sets the current drawing color to color. Note that color must have been previously allocated by the
alloccolor Pad++ command.

setfont font
Specifies the font to be used for rendering text for this item. Font must specify a filename which
contains an Adobe Type 1 font, or the string "Line" which causes the Pad++ line-font to be used.
Defaults to "Times-12". (Also see the setfontheight command.)

setfontheight height
Sets the height of the font for future drawing with render callbacks. Height is specified in pixels. (Also
see the setfont command).

setjoinstyle joinstyle

Sets the joinstyle of lines for drawing. Joinstyle may be any of: "bevel", "miter", or "round".

setlinewidth width
Sets the current drawing width to a zoomable width. All lines will be drawn with this width. This is a
zoomable width, so this specifies the width as it will look when the view has a magnification of 1.0.

These commands provide drawing commands in a style much like postscript.

closepath
Specifies the end of a path.

curveto vector
Draws a bezier curve. Here, vector is a six-dimensional vector. The current point plus these three points
specify four points which control the bezier curve.

fill
Fills the current path.

lineto vector
Specifies a straight line in the current path from the current point to (x, y) specified by vector. Makes (x,
y) the current point.

moveto vector
Moves the current point within the current path to (x, y) specified by vector.

newpath
Specifies the beginning of a new path.

stroke
Draws the current path with an outline only - the path is not filled.

These commands provide control over refinement.

interrupted
Returns true (1) if there has been an event during this render to interrupt it. It is up to objects that take
very long to render themselves to check this flag during the rendering. If it is true (i.e., the render has
been interrupted), then the Kpl render routine should return immediately - without completing the
render. Generally, renders at refinement level 0 should always be quite fast, but further refinement levels

Page 102

can take an arbitrarily long time to render as long as they are interruptible.

refine
Specifies that this item wants to be refined. Pad++ will schedule a refinement, and at some point in the
near future, the item will be re-rendered at the next higher refinement level. An item can use the current
level in conjunction with this command to render itself simply at first, and then fill in more and more
detail when it is refined.

Here is an example that creates a Kpl item with a renderscript that exercises some of the commands described here.

Tcl code to load Kpl code and to create
Pad++ Kpl item.

kpl eval 'triangle.kpl source
set pen [.pad alloccolor brown]
.pad create kpl -bb {-10:-10 110:110} -renderscript {test_drawing}

/* Kpl code (in a separate file)
 to test the drawing commands */

{
/* Draw a looping bezier curve */

3 setlinewidth
'pen1 tclget setcolor
newpath

0:0 moveto
200:75:-100:75:100:0 curveto

stroke

/* Draw a filled square */
'pen2 tclget setcolor
newpath

0:0 moveto
50:0 lineto
50:50 lineto
0:50 lineto

fill

/* Draw a square outline */
'pen3 tclget setcolor
newpath

0:0 moveto
50:0 lineto
50:50 lineto
0:50 lineto
0:0 lineto

stroke

/* Draw a square outline
with an absolute width */

1 setabslinewidth
'pen4 tclget setcolor
newpath

0:0 moveto
50:0 lineto
50:50 lineto

Page 103

0:50 lineto
0:0 lineto

stroke

/* Cause one level of refinement.
Notice the bezier curve is rendered
at low-resolution at first,
and then improves with refinement. */

getlevel => i
i 1 < (

refine
)
} -> test_drawing

