
The Shapes of Abstraction in Data Structure Diagrams
Devamardeep Hayatpur

Department of Cognitive Science and Design Lab
University of California, San Diego

La Jolla, California, USA
dshayatpur@ucsd.edu

Brian Hempel
Department of Cognitive Science and Design Lab

University of California San Deigo
La Jolla, California, USA
bhempel@ucsd.edu

Richard Lin
University of California, Los Angeles

Los Angeles, California, USA
richardlin@ucla.edu

Haijun Xia
Department of Cognitive Science and Design Lab

University of California, San Diego
San Diego, California, USA

haijunxia@ucsd.edu

Abstract
Tools to inspect runtime state, like print statements and debuggers,
are an essential part of programming. Yet, a major limitation is
that they present data at a fixed, low level of abstraction which
can overload the user with irrelevant details. In contrast, human
drawings of data structures use many illustrative visual abstrac-
tions to show the most useful information. We attempt to bridge the
gap by surveying 80 programmer-produced diagrams to develop a
mechanical approach for capturing visual abstraction, termed ab-
straction moves. An abstraction move selects data objects of interest,
and then revisualizes, simplifies, or annotates them. We implement
these moves as a diagramming language for JavaScript code, named
Chisel, and show that it can effectively reproduce 78 out of the 80
surveyed diagrams. In a preliminary study with four CS educators,
we evaluate its usage and discover potential contexts of use. Our
approach of mechanically moving between levels of abstraction
in data displays opens the doors to new tools and workflows in
programming education and software development.

CCS Concepts
• Human-centered computing → Information visualization.

Keywords
programming, abstraction, graphical representations
ACM Reference Format:
Devamardeep Hayatpur, Brian Hempel, Richard Lin, and Haijun Xia. 2025.
The Shapes of Abstraction in Data Structure Diagrams. In CHI Conference
on Human Factors in Computing Systems (CHI ’25), April 26–May 01, 2025,
Yokohama, Japan. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3706598.3713723

1 Introduction
Understanding code is hard. We have to simulate, in our mind,
how a machine would execute each instruction; how data will be
transformed across the life cycle of the program’s execution. To

This work is licensed under a Creative Commons Attribution 4.0 International License.
CHI ’25, Yokohama, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1394-1/25/04
https://doi.org/10.1145/3706598.3713723

help us, we rely on a variety of mechanical aids, like print state-
ments and debuggers, to see the runtime state. In these tools, we
see data in a concrete display. As an example, while debugging, we
might see an array update from values [3,2,1,4,3,8,0,1,9] to
[0,3,2,1,4,3,8,1,9]. Then, it is up to us to deduce the abstract
behavior of the code from these values, that is, the smallest element
has moved to the front. Understanding the behavior from this dis-
play is overwhelming. It both (a) shows too much as most of the
array is irrelevant to the operation, and (b) does not show enough as
the points of interest, like the smallest element, are not called out.
In other words, it does not display the most useful information.

In contrast, human notations of data, like drawings and diagrams,
make use of illustrative abstractions [15]. We might have drawn the
array update as: [3,2,...0(𝑚𝑖𝑛) ...] to [0(𝑚𝑖𝑛) ,3,2,...], abbrevi-
ating superfluous elements and labeling the smallest value ‘𝑚𝑖𝑛’ to
illustrate that it is has been pushed to the front.

This work seeks to bridge the gap in abstraction between con-
crete displays of data in programming tools and conceptual draw-
ings. We conducted a content analysis of 80 programmer-produced
diagrams sampled from real-world practice and instruction. We
deduced step-by-step ways in which these diagrams are abstracted
compared to a counterpart concrete display. We term these steps
abstraction moves, which are comprised of two parts: a selection
that describes the piece of data being abstracted, and one of three
abstraction strategies: a revisualization (e.g. changing the visual
layout from a list to a grid), simplification (e.g. abbreviating the
data), or annotation (e.g. putting a label on part of the data).

We then used the discovered abstraction moves to design a
JavaScript-based diagramming language, named Chisel, for creating
data structure diagrams through incremental shifts in abstraction.
For example, to construct the earlier notation of the array, we can
first select ranges of the concrete data [3,2,1,4,3,8,0,1,9] and
abbreviate them, [3,2,...,0,...], then select the minimum element,
[3,2,...,0,...] and label it: [3,2,...,0(𝑚𝑖𝑛) ,...]. The advantage
of creating diagrams through Chisel is that it can:

(1) be dynamic to changes in the data, if the array is updated,
the process can be followed again, and the diagram would
reflect the update (e.g. [5,1,...,-1(𝑚𝑖𝑛) ,...]).

(2) be flexible across levels of abstraction, we can easily add and
take away moves (e.g. no longer elide the start, [3,2,1,4,3,
8,0(𝑚𝑖𝑛) ,...]).

https://orcid.org/0000-0001-5984-9752
https://orcid.org/0000-0003-3466-5556
https://orcid.org/0000-0003-3960-6248
https://orcid.org/0000-0002-9425-0881
https://doi.org/10.1145/3706598.3713723
https://doi.org/10.1145/3706598.3713723
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3706598.3713723
mailto:haijunxia@ucsd.edu
mailto:bhempel@ucsd.edu
mailto:richardlin@ucla.edu
mailto:dshayatpur@ucsd.edu

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Devamardeep Hayatpur, Brian Hempel, Richard Lin, and Haijun Xia

(3) provide a visible record of abstraction, it describes assumptions
about what is considered essential and non-essential about
the data, which can then be scrutinized, adapted, and revised.

Using Chisel, we were able to reproduce visual abstractions in 78/80
diagrams sampled in our content analysis, and in a preliminary
study with three computer science instructors and one teaching
assistant, we found encouraging initial results on usability of Chisel
and potential contexts of use.

2 Related Work
Visual abstraction transforms information into visual representa-
tions by abstracting away its idiosyncrasies to simplify, highlight,
and summarize it [38]. Below, we survey the use of visual abstrac-
tions in programming and existing solutions to authoring diagrams.

2.1 Roles of Visual Abstraction in Programming
Programmers use visuals prolifically: they draw their software’s
design, data structures, code, and its execution [3, 8, 20, 30, 42], and
instructors rely on diagrams such as “list as a sequence of boxes,”
“control flow as a graph,” “memory as a stack,” etc. [16]. Petre [35]
finds that programmers omit information to reason across designs,
and Mangano et al. [30] find that software designers shifted between
levels of abstraction in their sketches to “focus on particular aspect of
the design by omitting non-relevant details.” Fong et al. [17] studied
diagrams of linked lists made by a community of Youtubers, some of
whom shifted between different levels of abstraction. These works
document the use of diagrams at varying levels of abstraction, but do
not provide a clear vocabulary to operationalize visual abstraction,
which this work aims to contribute.

2.2 Visualizations of Runtime State
Interfaces to inspect runtime state, like traditional debuggers, read-
eval-print-loop (REPLs), and print statements, are essential tools for
programmers to understand and write code. Program visualization
tools like Python Tutor [19], Projection Boxes [26], and CrossCode
[21] automatically provide richer visualizations of runtime values
during execution. However, across these tools, data is shown at a
fixed low-level of abstraction: concrete values are shown in full
detail, with little possibility of customization.

Abstracted displays of program output are under-explored, and
thus, their design space is unclear. To our knowledge, two prior
works on interactive systems which use abstract displays exist:
Curry [11]’s PAD where users record executions on abstract data,
and McDirmid [32]’s abstract notation for manipulating sequences.
Outside of interactive systems, Wilhelm et al. conducted a series
of projects to automatically infer and show invariants of linked
data structures using static analysis, facilitating focus on relevant
aspects of the data [6, 34, 40]. These works do not cover the whole
suite of common data structures, nor was their design grounded in
the notations and abstractions programmers use in practice.

2.3 Data Visualization Frameworks
General purpose editors, like Figma, Inkscape, and Illustrator, enable
manual assembly of diagrams with direct manipulation on primi-
tive marks and shapes on a canvas. However, graphical editors can
quickly become tedious for making, updating, and exploring design

alternatives [29]. To mitigate this tedium, programmatic visualiza-
tion frameworks facilitate diagramming by, e.g. scene manipulation,
like D3 [5], or with declarative specifications, like Bluefish [36]. Pen-
rose [43], a diagramming tool for mathematical diagrams separates
domain knowledge from the visual representation, which allows for
reusable and extendable representations. The closest prior system
to our target usage is Lau and Guo [25]’s Data Theater, which cre-
ates explorable explanations of Python code by mapping runtime
values onto graphical objects using a declarative specification.

The salient difference between Chisel and existing visualization
frameworks is that Chisel is designed around diagrams of data struc-
tures and abstractions on them. To achieve the same outcome in,
e.g., Penrose, a user would need to build a domain and style library
that implements Chisel itself. The relationship between Chisel and
Bluefish or D3 is similar. A more subtle difference is that Chisel
uses mutating operations to gradually arrive at a diagram from a
concrete display of data, which implies that diagrams cannot be en-
coded directly at the appropriate level of abstraction. We speculate
that for illustrating conceptual ideas which are not parameterized
by concrete data, our approach will provide little benefit. Instead,
a Chisel program specifies a design space of diagrams that cuts
across multiple levels of abstractions down to the concrete, which
can prove helpful when concrete data is meaningful (e.g. when de-
bugging) or when concrete values can scaffold understanding. We
further sketch out appropriate places to use Chisel in subsection 4.3.

3 Abstraction Moves
To discover an initial set of abstraction moves—i.e. visual opera-
tions that incrementally transform a concrete display of data to a
diagrammatic representation—we conducted a content analysis of
a wide-ranging corpus of data structure diagrams.

Table 1: List of diagram sources. Count denotes the number
of total diagrams collected from each source.

Source Use Case Modality Count

The Linux Kernel 1 Codebase ASCII 57
Chromium Codebase ASCII 17
RFCs 1–500 2 Design

Standard
ASCII 69

Algorithm Design [24] Textbook Graphics 16
Intro. to Algorithms [10] Textbook Graphics 87
Crafting Interpreters [33] Textbook Graphics 66
Software Design by Example [41] Textbook Graphics 34
MIT Intro. to Algorithms [13] Lecture Drawing 40
UW Applied Algorithms [2] Lecture Graphics 86
UIUC Algorithms [14] Lecture Drawing 60

3.1 Methodology
3.1.1 Data Collection. We collected a corpus of diagrams from
ten real-world sources spanning different use cases and modali-
ties (Table 1). We limited our scope to pictures of common data

1The ASCII diagrams from Linux and Chromium use data collected in [20].
2The first 500 IETF RFCs [23], which are technical internet standards from 1969—1993.

The Shapes of Abstraction in Data Structure Diagrams CHI ’25, April 26–May 01, 2025, Yokohama, Japan

structures: numbers, strings, lists, graphs, records, pointers, and
combinations of them. More specialized representations like those
embedded in Euclidean space (e.g. plots, or geometric shapes) were
filtered out. Repeated visualizations of the same style from the same
source were also filtered out. Our goal was not to produce counts
or frequency statistics, but to have a diverse sample of ordinary
data structure representations to describe visual abstraction.

3.1.2 Sampling. Twenty diagrams were sampled at a time, two
from each of the ten sources. To strike a balance between uniform
sampling that reflect the diagrams in our dataset as well as to
capture their variance, we sampled one diagram randomly and one
selected by the first author to prioritize types of diagrams that have
not yet been analyzed.

3.1.3 Coding. The first author annotated each diagram by anno-
tating its data structure and the moves required to move from a
plausible concrete display3 to the diagram (e.g. “hide all values
in the list”). After each round of coding, the remaining authors
reviewed the annotations, and the first author iterated on the code-
book based on their feedback. The process was concluded when
no more variations were observed (𝑁 = 80). The first author then
performed a round of deductive coding by revisiting the older codes,
and re-annotating them with the derived codebook. The outcome
of this analysis provided the broad framework and categories of
abstraction moves. (Appendix A includes examples of diagrams
annotated with the codebook.)

3.1.4 Formalizing. We implemented the abstraction moves dis-
cerned in the codebook as operations in a JavaScript-based diagram-
ming language, Chisel, for visualizing runtime state. We constructed
the prototype inductively by reproducing each of the 80 diagrams
in the content analysis and maintained a close mapping between
the qualitative codes and the operations in the language. As such,
we were able to (a) evaluate if the basic categories in the content
analysis and our syntax are logically consistent and expressive, (b)
capture idiosyncrasies not detailed in the qualitative description
but required when actually visualizing diagrams (e.g. visual styles),
and (c) apply the framework generatively to create new diagrams.

3.2 Building Diagrams with Abstraction Moves
To demonstrate how abstraction moves can be used to specify a
diagram, Figure 1 provides an illustrated workflow of partially
recreating a diagram from our corpus of array partitions (Figure 1,
top). Specifically, the diagram displays a list divided into groups of
𝑛/3 (where 𝑛 is the length of the list), with each group labeled with
its location. We start with a generic display 1 , and then:

2 ...select the list; selections are shown with a colored overlay,
3 ...revisualize the diagram to be shown as blocks instead of

comma-separated-values,
4 , 5 ...mutate the selection by partitioning it, and then simplify

the partitions by clumping together the values into three
larger sections,

6 , 7 ...annotate locations of those sections onto the array and add
connections between the sections.

3The first author made an educated guess to underlying representation of concrete
data using the context surrounding the diagram.

let s = Select(L)2.

Select the list.2

1 Display list L.

Reference Diagram

1. Display(L)

7. Clump(s)

5 Simplify by clumping the parts into three wholes.

8.

9.

10.

11.

12.

13.

14.

15.

LabelLocation(s, {

 coordinates: L,

 range: [0, Var('n')],

 remap_range: true

})

for (let i = 0; i < s.length - 1; i++) {

 Connect(s[i], s[i + 1])

}

Annotate location range of each partition.

Annotate connections between partitions.

6

7

Revisualize(s, 'Sequence', {

 style: 'Blocks'

})

3.

4.

5.

3 Revisualize the list as a sequence of blocks.

6. s = PartitionSelection(s, 3)

4 Partition selection into three evenly-sized parts.

Figure 1: A partial recreation of a diagram from Cormen et al.
[10]’s Introduction to Algorithms (top), where it was used to
illustrate the worst-case lower bound of insertion sort. We
assume that the list is stored in a variable L, and its length
stored in n.

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Devamardeep Hayatpur, Brian Hempel, Richard Lin, and Haijun Xia

1 Remove clump. 2 Change the number of partitions.

s = PartitionSelection(s, 2)3 3 Update inputs. style: 'Comma Separated''Blocks'

4 Change visual style

Figure 2: Variations on array partitions in Figure 1: 1 removes a simplification; 2 updates the number of partitions to two; 3

halves the length of the input list; and 4 updates the initial visual style to be a comma separated list instead of blocks.

Having reconstructed the diagram through abstraction moves, we
can navigate between levels of abstraction (by adding, removing,
and varying moves), as well as different states of data (Figure 2).

3.3 Overview of Abstraction Moves
Below we describe abstraction moves and Chisel’s syntax.

3.3.1 Display. To initially render a diagram, Chisel uses
Display(𝑑), which takes data as input and adds a diagram to the
scene. It supports ordinary data structures: primitives (strings,
numbers, booleans, nulls), combinations of them (arrays and
objects), and variables.

Data 𝑑 := 𝑛𝑢𝑚 | 𝑏𝑜𝑜𝑙 | 𝑠𝑡 𝑟 𝑖𝑛𝑔 | 𝑛𝑢𝑙𝑙 | 𝑎𝑟 𝑟 𝑎𝑦 | 𝑜𝑏 𝑗 𝑒𝑐𝑡 | 𝑣 𝑎𝑟 𝑖𝑎𝑏𝑙𝑒
Display provides visuals resembling a typical debugger...

(1) ...primitives are shown with their value,
(2) ...arrays are shown as horizontal comma separated values, if

it contains one or more objects, then it is shown as a vertical
list labeled with its indices,

(3) ...objects are shown as an indented hierarchy,
(4) ...variables are shown with their name above the their value.

3.3.2 Selections. Selections are ways to refer to subsets of data for
later revisualizing, simplifying, or annotating. A selection can be to
a data value (e.g. first item of a list), a contiguous span (e.g. a row
of items in a grid), or to a union of other selections (e.g. the first
and last item in a list).

Selection 𝑠𝑒𝑙 := data selection | span selection | union selection

The basic selection operator accepts multiple data values to be
selected: Select(𝑑1,𝑑2,...). The selections can then be merged
into contiguous spanning selections using SpanSelection(𝑠𝑒𝑙).
We also provide selections to select subparts of data, which, along
with the basic selection strategies, are illustrated in Figure 3 A .

3.3.3 Revisualizations. We categorized data structures being visu-
alized as graphs, sequences, and grids:

(1) A node link graph, used to show data structures such as
graphs or a pointer data structure. As specific cases of graphs,
trees and indented hierarchies, can visualize objects like bi-
nary trees.

(2) Sequences, to visualize ordered collections, e.g. arrays, strings,
bits, and memory layouts.

(3) Grids, to visualize 2D collections, matrices, or data tables.
Chisel provides Revisualize(𝑠𝑒𝑙 , graph | tree | hierarchy | se-
quence | grid), to revisualize a selection under different visual
forms. Supported revisualizations are illustrated in Figure 3 B .

Data formats. For data structures where JavaScript does not
define a format, Chisel provides a canonical format...

(1) ...graphs can be made from (a) objects with both vertices
(a list of objects) and edges (a list of vertex index pairs)
attributes or (b) constructed as a pointer graph from any
key-value object or an array.

(2) ...trees can be made from objects with a children (a list of
objects) attribute, or attributes left and right.

(3) ...grids can be created from two dimensional arrays or from
tabular data (i.e. a list of objects which share attributes).

Arranging sub-diagrams. Some diagrams in our corpus used lay-
outs within diagrams, e.g., aligning two arrays in parallel. Chisel
supports this in an ad-hoc way by collecting the sub-diagrams to be
organized into a larger data structure and revisualizing it. This basic
approach accommodates the diagrams in our content analysis—but
in practice these arrangements could be specified more explicitly
by e.g. using relational constraints as in Bluefish [36].

3.3.4 Simplifications. Simplifications describe ways information is
omitted in the display. We categorized four types of simplifications.

(1) Hide the displayed value.
(2) Clump a span of values into one shape. The size of the clump

is proportional to the number of values underneath it (e.g. a
clump of two values will be smaller than that of ten values).

(3) Abbreviate is similar to clump, but collapses a span of values
into an ellipses with a fixed size and shape.

(4) Fragment isolates data within a larger container by explicitly
hiding the edges of the container.

Figure 4 C provides the signatures and illustrates examples of each
simplification strategy as implemented in Chisel.

3.3.5 Annotations. Annotations add information to the display:

(1) Styles update the appearance of a value, e.g. changing its
background color, adding outlines, etc. Chisel uses CSS style
declarations to modify appearance of elements. In addition
to styling individual data values, an encircled region around
multiple data values is also available for styling.

(2) Labels add text around (or inline with) the selected data.
These are versatile: they can attached be to an identifier or
name, a property satisfied by the selected data (e.g. putting
‘𝑥 ≠ 0’ next to non-zero elements), a textual description, etc.
Labels also annotate a property of selected data, such as its
index locations (e.g. 0, 1, or named like 𝑛 − 1), or the length of
a spanning selection (e.g. 5, or named like 𝑛). Chisel supports

The Shapes of Abstraction in Data Structure Diagrams CHI ’25, April 26–May 01, 2025, Yokohama, Japan

SpanSelection(sel)

s = Select(L[0], L[1], L[3])

s = SpanSelection(s)

Selects contiguous ranges in the
input selection.

s = Select(L[2])

s = InvertSelection(s)

InvertSelection(sel)

Selects the rest of the elements
in a container.

s = SelectByCondition(L, d => d > 0)

SelectByCondition(d, d bool)

Recursively selects parts of data that
satisfy the provided condition.

Select(d1, d2, ...)

Selects data corresponding to
one or more expressions.

s = Select(L[0], L[1])

s = Select(L)

s = PartitionSelection(s, 2) s = SelectRows(M, 0) s = SelectCols(M, 0, 2)

PartitionSelection(sel,num)

Splits a selection into specified
number of evenly-sized parts.

Specific to sequences and grids.

s = SelectNodes(G)

SelectNodes(d)

Selects individual nodes of a
graph, tree, or hierarchy.

s = SelectEdge(G.vertices[0],

G.vertices[1])

SelectEdge(d1, d2)

Selects an edge between two
nodes in a graph or a tree.

s = SelectSubtree(T.right)

SelectSubtree(d)

Selects a subtree in a tree.

Specific to graphs, trees, hierarchies.

SelectRows(d, a:num, b?:num)

Selects range of rows from till . If is not
specified then selects the row at .

a b b

a

Specific to grids.

SelectCols(d, a:num, b?:num)

Selects range of columns from till . If is
not specified then selects the column at .

a b b

a

Selections.

Revisualizations.

A

B

Revisualize(s, 'Graph', { pointer_graph: true })

...with options to adjust layout, select
directedness, and to construct a pointer graph.

Revisualize(s, 'Graph')

Revisualize(sel, 'Graph', ...)

Revisualize(s, 'Tree')

...inherits layout options from the graph,
and an option to trim null leaves.

Revisualize(sel, 'Tree', ...)

...inherits layout options from the graph.

Revisualize(sel, 'Hierarchy', ...)

Revisualize(s, 'Hierarchy')

...with options to adjust layout, and set style as either
comma separated, space separated, or blocks.

Revisualize(sel, 'Sequence', ...)

Revisualize(s, 'Sequence', {

 style: 'Blocks',
 orientation: 'Vertical'

})

...with options to adjust layout and sho w borders.

Revisualize(s, 'Grid')

Revisualize(s, 'Grid')

Revisualize(sel, 'Grid', .. .)

Figure 3: Function signatures and examples of the supported selections (A) and revisualizations (B).

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Devamardeep Hayatpur, Brian Hempel, Richard Lin, and Haijun Xia

Collapses the selection(s) into a clump.

Clump(sel)

Puts ellipses in place of the selection.

Abbreviate(sel)

s = Select(L[1], L[2])

s = SpanSelection(s)

Hide(s)

s = Select(L[1], L[2])

s = SpanSelection(s)

Clump(s)

s = Select(L[1], L[2])

s = SpanSelection(s)

Abbreviate(s)

s = Select(L[1], L[2])

s = SpanSelection(s)

Fragment(s)

Hides the values under selection(s).

Hide(sel)

Elides the inverse of the selection.

Fragment(sel)

s = Select(L[3])

Style(s, {

 background: 'black',

 color: 'white'

})

Applies a CSS style on the elements in selection.

Style(sel, styles)

s1 = Select(...L1)

s2 = Select(...L2)

Connect(s1, s2)

Connects elements in s1 to elements
s2 using arrows, with options to
adjust mapping and directedness.

Connect(sel1, sel2, ...)

s = Select(...L)

LabelLocation(s)

Label the location of the selected objects, with options to...

 ...compute location relative to an array (coordinates),

 ...to specify a start and end (range),

 ...and to remap the coordinates onto the range (remap_range).

LabelLocation(sel, text?: string string, ...)

Labels the name of selected objects based on variable names.

Labels the length of selected objects.
(Requires the selection to be an array).

LabelIdentifier(sel, text?: string string, ...)

LabelLength(sel, text?: string string, ...)

Variations

s1 = Select(L[1])

s2 = Select(L[3])

Label(s1, 'X')

Label(s2, d => d*3, { placement: 'top' })

Put a label inline or on outset of selected objects.

Label(sel, text: string | (d string), ...)

s = Select(T, T.right)

s = SpanSelection(s)

Encircle(s)

Puts a background
surrounding the selection.

Encircle(sel)

Simplifications.

Annotations.

C

D

Figure 4: Function signatures and examples of simplifications (C) and annotations (D).

adding custom labels, as well as specialized functions for
labeling locations, names, and lengths of the selected items.

(3) Connection annotations add a visual link (e.g., an arrow) be-
tween data selections. For example, to annotate data move-
ment, or to visualize a connection between data structures
(e.g., a shared pointer). Connections can exist between differ-
ent diagrams (e.g. before-after snapshots of a data structure)
or within a diagram (e.g. data movement of values). In Chisel,
connection annotations are simplified as connecting arrows
(which can either be directed or not).

Figure 4 D shows each annotation strategy implemented in Chisel.

3.4 Reproducing Observed Diagrams
Chisel’s syntax was constructed inductively by reproducing each
of the 80 observed diagrams. The first author then annotated each
code from the content analysis with it either being successfully
reproduced, partially reproduced (i.e. an alternate representation
that captures the same meaning), or not reproduced at all (i.e. unable
to represent the meaning of the code).

Table 2 provides a granular tally of replication success per code
in the content analysis. We were able to accommodate for and
replicate 78/80 diagrams. Figure 5 showcases some of the diagrams
that were reproduced. A gallery of all diagrams reproduced, along

Table 2: Tally statistics on the codes reproduced by our system
grouped by the primary data structure in the diagram.

Data # Revisualize Simplify Annotate

Graph 15 16/16 (100%) 17/17 (∼100%) 23/27 (∼85%)
Tree 17 18/22 (∼80%) 16/18 (∼90%) 31/33 (∼95%)
Array 18 25/26 (∼95%) 17/18 (∼95%) 30/31 (∼95%)
2D Array 7 11/12 (∼90%) 10/11 (∼90%) 11/11 (100%)
Memory 23 31/32 (∼95%) 27/30 (90%) 56/60 (∼95%)

with the codes is provided at: https://abstraction-moves.github.io/.
Chisel specifications contained 21 lines of code on average across
the replicated diagrams.

3.4.1 Aspects of diagrams that were not reproduced. Two diagrams
contained visuals that we were not able to reproduce. Figure 5 B

is a diagram of a binary tree where a branch in the left subtree is
visible inside a clumped subtree. Chisel does not support showing a
fragment of data inside a container that has been simplified. Figure 5
C shows a matrix where the first two and the last two rows contain
abbreviated columns (i.e. 0...0), but those abbreviation don’t carry

https://abstraction-moves.github.io/

The Shapes of Abstraction in Data Structure Diagrams CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Example Reproductions

Binary Tree Tridiagonal Matrix

A

B C

Reference Diagram Partial reproduction

* Solves a linear system where the matrix is

*

*
*
*
*
*
*

* @param subDiag The sub diagonal of the mat

* @param mainDiag The main diagonal of the m

* @param supDiag The super diagonal of the m

* ...

 |dia(0) sup(0) 0 0 ... 0|

 |sub(0) dia(1) sup(1) 0 ... 0|

A =| ... |

 |0 ... 0 sub(n-2) dia(n-1) sup(n-1)|

 |0 ... 0 0 sub(n-1) dia(n)|

Reference Diagram Partial reproduction

Collision in a hash table

Array partition
Tree annotated with depths

Memory format
Website proxy tree Memory model

Radix sort
Binary search tree

Matrix quadrants
Directed graph

Matrix graph

Linked list

Job scheduling

Data table

Queue List of lists
Trie for domains

Merging two lists

DOM Tree

Alternate view of a sequence of bits
Array insertion

Merge sort call graph

Binary tree

Syntax tree

Bit checksum

Tagged Boolean Red black trees List of linked lists Binary trees
Memory address mapping

Figure 5: A Example gallery of reproduced diagrams. At the bottom are two diagrams whose abstraction Chisel was unable to
capture, along with the partial reproduction: B A binary tree diagram, from MIT’s Introduction to Algorithms [13] shows a
branch as part of a larger subtree, and C Tridiagonal matrix, from Chromium [9] which uses partial abbreviations on the rows.

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Devamardeep Hayatpur, Brian Hempel, Richard Lin, and Haijun Xia

let n = 1 + 2

let y = make_tree(n)

function make_tree(dep

Display(y)

let s = Select(y)

Revisualize(s, 'Tree')

User Code

Instrumented Code
Diagram Output

let n = tag(3)

let y = tag({...

Call(Display, L)

let s = Assign('

Call(Revisualize

let n = tag(3)

let y = tag({...})
Evaluate and Tag
Variable Values

AST Rewrite

JavaScript Evaluator

Abstraction Moves

Figure 6: An overview of the pipeline of the prototype. We first execute the user’s code and extract and tag variable values’
which are joined with an instrumented version of the abstraction specification.

into the rest of the rows, which makes the abbreviation inconsistent
with the grid visual structure.

3.5 Implementation Description
The prototype system is an in-browser JavaScript web application.
Figure 6 provides an overview of the architecture. Below, we will
detail two implementation details: data provenance tracking and
data-to-visual mappings.

3.5.1 Data provenance tracking. User’s data may not start in the
format required to display it appropriately, e.g. a graph may be
stored as an adjacency-matrix, while Chisel requires it to be a col-
lection of vertices and edges. So, the user must first transform the
data into the format accepted by Chisel. However, after the trans-
form, it can still be preferable to perform selections in terms of
the original structure, e.g. select a row in an adjacency matrix, and
have that selection propagated to the visual representation. There-
fore, we track data as it is transformed. Chisel rewrites variable
assignments to box each value and sub-value in a wrapper that con-
tains a unique identifier (see Figure 6), e.g. [5,2,3] becomes a data
structure of objects: Array 3 (Num(5) 0 ,Num(2) 1 ,Num(3) 2). We use
custom handlers to maintain data provenance, e.g. the expression
1+2 is rewritten to BinaryExpression(Num(1) 0 ,Num(2) 1) which
evaluates to Num(3)0,1. Operating on tagged data means that Chisel
is a subset of JavaScript, which so far includes the core constructs
(loops, conditionals), standard libraries on arrays (filters, slice, map),
as well as the Math standard library.

3.5.2 Technical Architecture. The prototype is a JavaScript web
application developed using TypeScript. We use acorn [1] for pars-
ing JavaScript into an AST, which is then traversed and rewritten.
We use Kiwi [28], a global constraint solver, for computing the
diagram layout, and math.js’ [12] algebra system to display named
indices relative to the actual data-length. There are some notable
implementation limitations:

(1) Visual layouts are not done as carefully as they could be. For
example, the graph layout renders a tree, and then adds back-
edges for cycles. In practice, a graph rendering algorithm
should be used (e.g. graphviz [18]).

(2) The current implementation requires a specific operator or-
der (revisualization, simplification, then annotation opera-
tions), to avoid failure states. This is not inherit to abstraction
moves, but a limitation of the current prototype.

(3) Potential optimizations for performance. The diagram in
Figure 2 1 renders within ∼ 200𝑚𝑠 on a twelve item array,
and takes over ∼ 5000𝑚𝑠 to render a fifty item array on our
machine. This poor scaling in render time is caused by the
global constraint layout solver and is limiting since visual
abstractions are perhaps the most helpful when making sense
of large amounts of data. An alternative is to use a local
constraint solver along with a separate engine for handling
global constraints when needed, as in Bluefish [36].

3.6 Initial Results on User Experience and
Usage Scenarios

Our core contribution is a description of visual abstractions in
data structure diagrams, and a reification of those descriptions into
Chisel. The syntax is intentionally interpretive and not grounded in
any particular context of use or task. To understand the experience
of working with the language and discover possible contexts of use,
we conducted a preliminary study with four introductory computer
science (CS) educators. We selected CS educators as they will likely
find the most immediate relevance from Chisel since they may be
manually designing diagrams of data structures and 7/10 diagram
sources in our content analysis were from educational contexts.

3.6.1 Participants. We recruited three CS instructors (𝑃1, 𝑃2, 𝑃4)
and one graduate student teaching assistant (𝑃3), see Table 3. Par-
ticipation was voluntary without compensation. Only 𝑃2 had prior
experience with using JavaScript.

3.6.2 Study Procedure. Each study lasted 60 minutes, and consisted
of three parts: (a) a tutorial of the system with four worked examples,
(b) a guided construction of a diagram,4 and (c) a semi-structured
interview on the shortcomings/successes of the notation and its
potential uses. The study is limited: the sample size is small and the
the session was closely shepherded by the experimenter. Our goal
was not necessarily to teach Chisel in the span of 30–40min (not
including interview time), but to get participants’ initial reactions
to using it and understand its potential contexts of use.

3.6.3 Usability Issues. In general, we were encouraged by the use
of Chisel in the short span of the study, 𝑃4 even found it to be
“pretty intuitive most of the time...I thought it was kind of fun!” All

4For the instructors, 𝑃1 , 𝑃2 , 𝑃4 , the target diagram was preselected from their slides
from a recent class, for 𝑃3 this was selected from our corpus.

The Shapes of Abstraction in Data Structure Diagrams CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Table 3: Participant demographics. Teaching includes experience as a teaching assistant.

ID Title Teaching
Experience

Subjects of recently taught courses

𝑃1 Associate Teaching Professor 10 years Intro to Python, Intro to Data Science, Data Science in Practice
𝑃2 Assistant Teaching Professor 11 years Practice and Application of Data Science, Data Visualization
𝑃3 Graduate student 4 years Intro to Python
𝑃4 Professor, Teaching Stream 35 years Intro to Programming (in Python), Software Design (in Java)

participants found the syntax to be reasonable, “from an API [stand-
point], the names make sense” (𝑃1), but would need more time to
get comfortable with it. There were multiple breakdowns during
the usage which we summarize below.

Difficulty discerning units of selection. A selection in Chisel can
span over multiple items (e.g. [1,2,3,4]) or be a union of multi-
ple items (e.g. [1,2,3,4]). All participants encountered difficulties
disambiguating if the selection was to individual items or to a span:
“am I selecting two things in a list or am I selecting one list with two
things?” (𝑃2). 𝑃3 and 𝑃4 also encountered situations where they
used an incompatible unit of selection as input to an operation. 𝑃3
suggested that confusion between individual and spanning selec-
tions may be resolved with better scaffolding when introducing the
syntax5 , and integrating type signatures of the operations into the
editor to learn valid inputs into the various moves. 𝑃2 suggested
adding more explicit visual cues, e.g. to use a “visual indicator...like
corners around [the selection]” if it is a spanning selection.

Lack of alternate paths and flexibility in authoring. Some strate-
gies that participants reached for were unsupported. For example,
instead of using PartitionSelection to split a large selection
into smaller evenly sized groups, 𝑃4 wanted to “start with all of the
values in L selected separately and then try to group them,” and 𝑃3
wished to index into data by indexing into a selection, “I wanted to
do s[0]...and so then I was just stuck.” Similarly, while navigating
the diagrams at this level of description was appreciated, “it’s cool
how like the grids and trees things just work out-of-the-box...as an
instructor, I’m like, the more hard coded things you can give me, the
better, because I don’t want to spend my time like pixel pushing the
diagrams” (𝑃2), 𝑃1 and 𝑃2 also expressed concerns of not having
control to tweak the diagrams, “I wonder how often the arrows actu-
ally do what I want?” (𝑃1). These concerns suggest building on a
general-purpose diagramming library as a base for Chisel, which
can be extendable to new diagrams and workflows. We discuss
opportunities for doing so in subsection 4.1.

3.6.4 Usage scenarios. We also asked participants if Chisel is rele-
vant to their teaching and its potential uses (if any).

Creating diagrams offline. All participants mentioned potential
for Chisel to help them prepare lecture slides. For 𝑃2, the flexibility
of picking the revisualization is particularly helpful: “often times
when we teach graphs...sometimes it’s an adjacency list, sometimes
it’s like a dictionary with vertices and edges.” 𝑃4 mused on using
it to compare algorithms, when “we’re teaching you insertion and

5The first example in the tutorial was the same as Figure 1, which implicitly creates
three span selections through PartitionSelection.

selection sort, let’s visualize the invariants of the two, and then we
[as a class] can visually compare them.” 𝑃3 and 𝑃4 also mentioned
using it to typeset diagrams for use in print:

“I would totally see using this to generate diagrams for a
paper I’m writing...having it automatically constructed
makes it, I think, well worth the effort because I might
want to change my input but keep the same view of the
output...that’s what got me excited at the very beginning
of this, because I was thinking back to the diagrams we
drew for the Java textbook that we wrote.” (𝑃4)

Creating diagrams interactively. 𝑃2 and 𝑃4 proposed to use Chisel
interactively during lecture. 𝑃2 would like to experiment with dia-
gramming alongside the students as a way to scaffold their learning:

“I think students would benefit a lot from being able to
move really slowly...if [Chisel] worked really well, and
I could make diagrams like very quickly or live even
then I can imagine myself commenting out parts of this
and then re-commenting it back to gradually show like
one row [in a data table] being added at a time.” (𝑃2)

𝑃4 would use Chisel to test different inputs live in class, “it’s the
what if questions that always happen. What if the list isn’t a length
that’s divisible by three? What if we’ve got an extra element? What if
the smallest item is at the front?” We also floated to 𝑃2 and 𝑃4 why
existing program visualization tools, like Python Tutor [19], did
not cover these use cases. To which, they responded that the level
of description and visual encoding was fixed: it would “just show
you the before and after” (𝑃2), and is “just a memory model, it’s not
a visualization tool.” (𝑃4).

4 Discussion and Future Work
We have presented abstraction moves, ways to incrementally shift a
concrete data display into a customized diagram. Below, we reflect
on limitations of our description and potential usage contexts.

4.1 Limitations of Translating a Content
Analysis to a DSL

When designing Chisel, we aimed to maintain a close mapping be-
tween the qualitative coding and the syntax. Translating qualitative
codes into operations may have helped with the high coverage over
the coded diagrams and provided meaningful names, but it has also
meant that similar operations and their variations were not unified
to form a smaller and more composable API. Below, we speculate
on potential areas of unification to reduce the API surface.

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Devamardeep Hayatpur, Brian Hempel, Richard Lin, and Haijun Xia

4.1.1 Selections. There are ten different functions for specifying
selections, six of which are for specific data structures. All these
functions are, broadly, different ways of selecting subparts of a data
structure. Instead of using specialized functions, we may use a more
generic method which generalizes to data types outside the ones
supported, e.g. using algebraic data types to specify selections via
pattern matching.

4.1.2 Simplifications and annotations. All four simplification func-
tions are closely linked to each other. Abbreviate and Hide are slight
variations on Clump, and Fragment effectively clumps the inverse
of the current selection. Moreover, the relationship between simpli-
fications and annotations is not yet clear. For example:

(1) We initially included a category for replacing a data value
with a label, which was later decomposed to a simplification
(Hide) plus annotate (Label).

(2) We could have assumed that all lists show indices by default
and those indices must be simplified away (instead of added
on with Label Location).

(3) We could have conceptualized Encircle as a container that is
yet to be simplified into a clump.

These suggest a more unified grammar for reducing and adding
information. A useful theoretical framework for generalizing ab-
stractions might be Brüggemann et al. [7]’s the Fold—a structure
for describing interactive data visualizations which includes opera-
tions for explication (revealing information), implicitation (hiding
information), and complication (adding dimensions of information).

4.1.3 Revisualizations. Chisel includes preset mappings of
data structures to visual structures through different calls to
Revisualize. This makes it brittle to any new visual types, e.g.
something simple, like setting the height of a visual mark to
a variable value is beyond the current syntax’s reach. We may
instead build on a grammar of graphics approach (e.g. similar
to ggplot2 [39]), to provide a composable and more incremental
approach for building graphics.

4.2 Comparison with Existing Classifications
Our description of abstraction moves reaffirms existing categoriza-
tions of diagrams. For example, we identified a small number of
visual structures in data structure drawings (graphs, sequences,
grids), which may be expanded to more, e.g. maps and plots [4].
Our description of annotation closely matches annotation cate-
gories uncovered by Head et al. [22]’s analysis of augmented math
equations (e.g. Label, Connection, and Encircle correspond to their
categories of text labels, connector, and background respectively).
An under-explored category in prior work that is surfaced by our
analysis are simplifications. To our knowledge, the closest notion is
Hayatpur et al. [20]’s notion of abstractions in ASCII drawings, in
which they categorize two broad strategies of abstraction as either
unpatterned elision where the omitted content cannot be inferred
(e.g. [x,...,y]) or patterned elision where the omitted content has
an inherent order (e.g. [1,2,...,10]). Abstraction moves surfaces
primitive operations which omit content (e.g. Abbreviate, Hide) to
mechanize these broader strategies.

4.3 Workflows Suitable to Abstraction Moves
As mentioned earlier, the benefit of abstraction moves is that they
are dynamic to changes in the data, flexible across levels of abstraction,
and provide a visible record of abstraction. We now sketch how these
qualities can be used in instruction and software development.

4.3.1 Instruction.

(1) Dynamic to changes in the data. To teach an algorithm, an
instructor often makes a slide showing how the algorithm
works on a small input data. However, this is an arduous
and brittle process: the slide is manually created for each
input data they wish to demonstrate. And, as mentioned by
𝑃4, if a student asks about an edge case in class, the static
slides are of no help. Instead, if the diagram was recorded
as a sequence of abstraction moves, the instructor could
improvise lessons by updating the concrete data live which
updates the diagram.

(2) Flexible across levels of abstraction. To transfer knowledge
from one situation to another, an instructor often present
variations of a problem to communicate essential features
of it by varying non-essential ones [27]. Abstraction moves
provide the ability for the instructor to define what is essen-
tial and what is non-essential interactively. For example, in
a merge sort algorithm, the diagram might start with con-
crete values, then the half-way point is labeled, and then
the two halves are clumped. Chisel could be extended to
support animated unfolding of the diagram in order to help
scaffold understanding (this type of interaction is also im-
plied by 𝑃2’s proposal for using Chisel to slowly reveal a data
transformation).

(3) A visible record of abstraction. Persistence allows for curat-
ing and standardizing diagrams. After creating abstraction
moves to illustrate one algorithm, an instructor can share it
with their colleagues, and collaboratively develop pedagogi-
cal material.

4.3.2 Software Development.

(1) Dynamic to changes in data. Since the diagram is responsive
to changes in data, it can be written once and then used to
illustrate many different variations of the same data struc-
ture, e.g. to illustrate test cases or edge cases of an algorithm.
Indeed, in their study of ASCII diagrams from open source
codebases, Hayatpur et al. [20] found illustrating test cases
as one of the key roles that diagrams play.

(2) Flexible across levels of abstraction. A diagram made with
abstraction moves can become a unifying representation
for high-level, conceptual documentation down to low-level
debug views. An array might initially be illustrated at a high-
level in the documentation with labels to relevant locations
but mostly elided, and then later be reused for debugging by
displaying the values in their full detail while keeping the
labels to relevant locations.

(3) A visible record of abstraction. Abstraction moves can also en-
able development of debugger views. They may be packaged
and shared in debugging tools (e.g. through GUI controls,
letting other programmers easily apply them).

The Shapes of Abstraction in Data Structure Diagrams CHI ’25, April 26–May 01, 2025, Yokohama, Japan

4.4 Future Work: Contextually Relevant
Diagrams and Direct Manipulation

Using Chisel requires learning a syntax which may be difficult to
grasp. Two ways in which abstraction moves might become more
integrated into programming workflows can be through recommen-
dation systems and direct manipulation:

4.4.1 Recommendation system for diagrams. To mitigate some te-
dium of writing Chisel, we could use the user’s code that is being
diagrammed (e.g. its variable names, indexes, scope) to infer con-
textually relevant diagrams as a starting point. This becomes more
relevant if Chisel is integrated into an ordinary IDE where multi-
ple diagrams co-exist in a code file and are attached to different
code snippets. For example, variables declared in a scope can be
automatically displayed. If an index into a list is used, e.g. L[i],
then a diagram where i is labeled on L can be suggested. Or, if
the diagram is attached to a loop which reads one element from
L at a time then the other elements can be elided. More general
abstractions might also inferred by program analysis techniques
like concolic execution [37] to collect abstract relations which can
be mapped to visual abstractions.

4.4.2 Specifying abstraction moves via direct manipulation. Graphic
editors like Powerpoint and Photoshop operate by principles of
direct manipulation (DM). Chisel could profit from a DM metaphor
rather than a programming languages one. For example, the user
might directly scrub over a portion of the display using their cursor,
and then open a menu to apply one of the abstraction moves. DM
may eliminate the need to internalize syntax and lower the barrier
to entry. Yet, open questions on the specific interactions remain:

(1) Disambiguating interaction intent, e.g. if the user scrubs over
the first two elements of the array L: [1,2,3,4], how can
we disambiguate between L[0:2], or L[0:L.length/2]?

(2) Specifying control flow, e.g. to select by a condition, like se-
lecting only the non-null values in the diagram?

Two approaches to these problems can be to either (a) use automa-
tion, e.g. using program synthesis to guess intended operation from
demonstrations [31], or (b) present both the syntax and a limited
direct manipulation view which provides a reasonable trade-off
between ease-of-use (from the DM metaphor) and expressiveness
(from the syntax).

5 Conclusion
We have demonstrated how abstraction moves—shifts in a data’s
display—enable creating illustrative diagrams from concrete data
values. Through a content analysis of 80 programmer-produced
diagrams, we discovered three overarching abstraction strategies:
revisualizations, simplifications, and annotations, as well as selections,
which specify the objects to be abstracted. We then implemented
abstraction moves in a JavaScript-based prototype that is able to re-
produce 78/80 diagrams. The ability to make these customized views
of data might enable new workflows in programming education,
e.g. interactively switching between levels of abstraction during a
lecture, and software development, e.g. building task-specific debug
views that can be packaged and shared with others.

Acknowledgments
We are overwhelmingly grateful to the anonymous reviewers for
their detailed reading and constructive feedback on the manu-
script which have improved it immensely. We also thank Matthew
Beaudouin-Lafon, Emilia Rosselli Del Turco, and Fuling Sun for
being early readers of the manuscript. This material is based upon
work supported by the National Science Foundation under Grant
No. 2432644.

References
[1] Acorn. 2024. Acorn. https://github.com/acornjs/acorn.
[2] Richard Anderson. 2013. CSEP 521: Applied Algorithms, Winter 2013 —

courses.cs.washington.edu. https://courses.cs.washington.edu/courses/csep521/
13wi/. [Accessed 12-09-2024].

[3] Sebastian Baltes and Stephan Diehl. 2017. Sketches and Diagrams in Practice.
CoRR abs/1706.09172 (2017). arXiv:1706.09172 http://arxiv.org/abs/1706.09172

[4] Alan F. Blackwell and Yuri Engelhardt. 2002. A Meta-Taxonomy for Diagram
Research. In Diagrammatic Representation and Reasoning, Michael Anderson,
Bernd Meyer, and Patrick Olivier (Eds.). Springer, 47–64. https://doi.org/10.1007/
978-1-4471-0109-3_3

[5] Mike Bostock. 2012. D3.js - Data-Driven Documents. http://d3js.org/
[6] Beatrix Braune and Reinhard Wilhelm. 2000. Focusing in Algorithm Explanation.

IEEE Trans. Vis. Comput. Graph. 6, 1 (2000), 1–7. https://doi.org/10.1109/2945.
841117

[7] Viktoria Brüggemann, Mark-Jan Bludau, and Marian Dörk. 2020. The Fold:
Rethinking Interactivity in Data Visualization. Digit. Humanit. Q. 14, 3 (2020).
http://www.digitalhumanities.org/dhq/vol/14/3/000487/000487.html

[8] Mauro Cherubini, Gina Venolia, Rob DeLine, and Amy J. Ko. 2007. Let’s Go to the
Whiteboard: How and Why Software Developers Use Drawings. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (San Jose,
California, USA) (CHI ’07). Association for Computing Machinery, New York, NY,
USA, 557–566. https://doi.org/10.1145/1240624.1240714

[9] Chromium. 2008. Home — chromium.org. https://www.chromium.org/chromium-
projects/. [Accessed 12-09-2024].

[10] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2022.
Introduction to algorithms. MIT press.

[11] Gael Alan Curry. 1978. Programming by Abstract Demonstration. Ph. D. Disserta-
tion. USA. AAI7814420.

[12] Jos de Jong. 2013. mathjs. https://mathjs.org/.
[13] Erik Demaine, Dr. Jason Ku, and Prof. Justin Solomon. 2020. Introduction to Al-

gorithms | Electrical Engineering and Computer Science | MIT OpenCourseWare
— ocw.mit.edu. https://ocw.mit.edu/courses/6-006-introduction-to-algorithms-
spring-2020/. [Accessed 12-09-2024].

[14] Jeff Erickson. 2016. CS 473: Lecture Schedule — courses.grainger.illinois.edu.
https://courses.grainger.illinois.edu/cs473/sp2016/lectures.html. [Accessed 12-
09-2024].

[15] Judith E. Fan, Wilma A. Bainbridge, Rebecca Chamberlain, and Jeffrey D. Wammes.
2023. Drawing as a versatile cognitive tool. Nature Reviews Psychology 2, 9 (01
Sep 2023), 556–568. https://doi.org/10.1038/s44159-023-00212-w

[16] Sally Fincher, Johan Jeuring, Craig S. Miller, Peter Donaldson, Benedict du Boulay,
Matthias Hauswirth, Arto Hellas, Felienne Hermans, Colleen M. Lewis, Andreas
Mühling, Janice L. Pearce, and Andrew Petersen. 2020. Notional Machines in
Computing Education: The Education of Attention. In Proceedings of the Work-
ing Group Reports on Innovation and Technology in Computer Science Education,
ITiCSE-WGR 2020, Trondheim, Norway, June 15-19, 2020, Michail N. Giannakos,
Guttorm Sindre, Andrew Luxton-Reilly, and Monica Divitini (Eds.). ACM, 21–50.
https://doi.org/10.1145/3437800.3439202

[17] Morgan M Fong, Seth Poulsen, and Geoffrey L Herman. 2021. What’s in a Linked
List? A Phenomenographic Study of Data Structure Diagrams. In ASEE Annual
Conference and Exposition, Conference Proceedings.

[18] Emden R Gansner. 2009. Drawing graphs with Graphviz. Technical report, AT&T
Bell Laboratories, Murray, Tech. Rep, Tech. Rep. (2009).

[19] Philip J. Guo. 2013. Online Python Tutor: Embeddable Web-based Program
Visualization for Cs Education. In Technical Symposium on Computer Science
Education (SIGCSE).

[20] Devamardeep Hayatpur, Brian Hempel, Kathy Chen, William Duan, Philip Guo,
and Haijun Xia. 2024. Taking ASCII Drawings Seriously: How Programmers
Diagram Code. In Conference on Human Factors in Computing Systems (CHI).
https://doi.org/10.1145/3544548.3581390

[21] Devamardeep Hayatpur, Daniel Wigdor, and Haijun Xia. 2023. CrossCode: Multi-
level Visualization of Program Execution. In Conference on Human Factors in
Computing Systems (CHI). https://doi.org/10.1145/3544548.3581390

[22] Andrew Head, Amber Xie, and Marti A. Hearst. 2022. Math Augmentation: How
Authors Enhance the Readability of Formulas using Novel Visual Design Practices.

https://github.com/acornjs/acorn
https://courses.cs.washington.edu/courses/csep521/13wi/
https://courses.cs.washington.edu/courses/csep521/13wi/
https://arxiv.org/abs/1706.09172
http://arxiv.org/abs/1706.09172
https://doi.org/10.1007/978-1-4471-0109-3_3
https://doi.org/10.1007/978-1-4471-0109-3_3
http://d3js.org/
https://doi.org/10.1109/2945.841117
https://doi.org/10.1109/2945.841117
http://www.digitalhumanities.org/dhq/vol/14/3/000487/000487.html
https://doi.org/10.1145/1240624.1240714
https://www.chromium.org/chromium-projects/
https://www.chromium.org/chromium-projects/
https://mathjs.org/
https://ocw.mit.edu/courses/6-006-introduction-to-algorithms-spring-2020/
https://ocw.mit.edu/courses/6-006-introduction-to-algorithms-spring-2020/
https://courses.grainger.illinois.edu/cs473/sp2016/lectures.html
https://doi.org/10.1038/s44159-023-00212-w
https://doi.org/10.1145/3437800.3439202
https://doi.org/10.1145/3544548.3581390
https://doi.org/10.1145/3544548.3581390
https://courses.grainger.illinois.edu
https://ocw.mit.edu
https://courses.cs.washington.edu

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Devamardeep Hayatpur, Brian Hempel, Richard Lin, and Haijun Xia

In CHI ’22: CHI Conference on Human Factors in Computing Systems, New Orleans,
LA, USA, 29 April 2022 - 5 May 2022, Simone D. J. Barbosa, Cliff Lampe, Caroline
Appert, David A. Shamma, Steven Mark Drucker, Julie R. Williamson, and Koji
Yatani (Eds.). ACM, 491:1–491:18. https://doi.org/10.1145/3491102.3501932

[23] IETF. 2024. About RFCs. https://www.ietf.org/process/rfcs/.
[24] J Kleinberg. 2006. Algorithm Design. Addison Wesley.
[25] Sam Lau and Philip J Guo. 2020. Data Theater: A live programming environ-

ment for prototyping data-driven explorable explanations. In Workshop on Live
Programming (LIVE).

[26] Sorin Lerner. 2020. Projection Boxes: On-the-fly Reconfigurable Visualization
for Live Programming. Conference on Human Factors in Computing Systems (CHI)
(2020).

[27] Mun Ling Lo. 2012. Variation theory and the improvement of teaching and learning.
Göteborg: Acta Universitatis Gothoburgensis.

[28] Lume. 2024. Kiwi. https://github.com/lume/kiwi.
[29] Dor Ma’ayan, Wode Ni, Katherine Ye, Chinmay Kulkarni, and Joshua Sunshine.

2020. How Domain Experts Create Conceptual Diagrams and Implications for
Tool Design. In CHI ’20: CHI Conference on Human Factors in Computing Systems,
Honolulu, HI, USA, April 25-30, 2020, Regina Bernhaupt, Florian ’Floyd’ Mueller,
David Verweij, Josh Andres, Joanna McGrenere, Andy Cockburn, Ignacio Avellino,
Alix Goguey, Pernille Bjøn, Shengdong Zhao, Briane Paul Samson, and Rafal
Kocielnik (Eds.). ACM, 1–14. https://doi.org/10.1145/3313831.3376253

[30] Nicolas Mangano, Thomas D. LaToza, Marian Petre, and André van der Hoek. 2015.
How Software Designers Interact with Sketches at the Whiteboard. IEEE Trans.
Software Eng. 41, 2 (2015), 135–156. https://doi.org/10.1109/TSE.2014.2362924

[31] Mikaël Mayer, Gustavo Soares, Maxim Grechkin, Vu Le, Mark Marron, Oleksandr
Polozov, Rishabh Singh, Benjamin G. Zorn, and Sumit Gulwani. 2015. User Interac-
tion Models for Disambiguation in Programming by Example. In Proceedings of the
28th Annual ACM Symposium on User Interface Software & Technology, UIST 2015,
Charlotte, NC, USA, November 8-11, 2015, Celine Latulipe, Bjoern Hartmann, and
Tovi Grossman (Eds.). ACM, 291–301. https://doi.org/10.1145/2807442.2807459

[32] Sean McDirmid. 2018. Tangible Abstraction. SPLASH-I (2018). A video of the
system is at https://www.youtube.com/watch?v=6VmA_whVxPc.

[33] Robert Nystrom. 2021. Crafting interpreters. Genever Benning.
[34] Sascha A. Parduhn, Raimund Seidel, and Reinhard Wilhelm. 2008. Algorithm

visualization using concrete and abstract shape graphs. In Proceedings of the ACM
2008 Symposium on Software Visualization, Ammersee, Germany, September 16-17,
2008, Rainer Koschke, Christopher D. Hundhausen, and Alexandru C. Telea (Eds.).
ACM, 33–36. https://doi.org/10.1145/1409720.1409726

[35] Marian Petre. 2009. Insights From Expert Software Design Practice. In The Art,
Science, and Engineering of Programming Journal. https://doi.org/10.1145/1595696.
1595731

[36] Josh Pollock, Catherine Mei, Grace Huang, Elliot Evans, Daniel Jackson, and
Arvind Satyanarayan. 2024. Bluefish: Composing Diagrams with Declarative
Relations. (2024).

[37] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: a concolic unit
testing engine for C. In Proceedings of the 10th European Software Engineer-
ing Conference held jointly with 13th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2005, Lisbon, Portugal, September 5-9,
2005, Michel Wermelinger and Harald C. Gall (Eds.). ACM, 263–272. https:
//doi.org/10.1145/1081706.1081750

[38] Ivan Viola and Tobias Isenberg. 2018. Pondering the Concept of Abstraction in
(Illustrative) Visualization. IEEE Trans. Vis. Comput. Graph. 24, 9 (2018), 2573–2588.
https://doi.org/10.1109/TVCG.2017.2747545

[39] Hadley Wickham. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-
Verlag New York. https://ggplot2.tidyverse.org

[40] Reinhard Wilhelm, Tomasz Müldner, and Raimund Seidel. 2001. Algorithm
Explanation: Visualizing Abstract States and Invariants. In Software Visualization,
International Seminar Dagstuhl Castle, Germany, May 20-25, 2001, Revised Lectures
(Lecture Notes in Computer Science, Vol. 2269), Stephan Diehl (Ed.). Springer, 381–
394. https://doi.org/10.1007/3-540-45875-1_30

[41] Greg Wilson. 2022. Software Design by Example — third-bit.com. https://third-
bit.com/sdxpy/. [Accessed 12-09-2024].

[42] Koji Yatani, Eunyoung Chung, Carlos Jensen, and Khai N. Truong. 2009. Under-
standing How and Why Open Source Contributors Use Diagrams in the Devel-
opment of Ubuntu. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (Boston, MA, USA) (CHI ’09). Association for Computing Ma-
chinery, New York, NY, USA, 995–1004. https://doi.org/10.1145/1518701.1518853

[43] Katherine Ye, Wode Ni, Max Krieger, Dor Ma’ayan, Jenna Wise, Jonathan Aldrich,
Joshua Sunshine, and Keenan Crane. 2020. Penrose: from mathematical notation
to beautiful diagrams. ACM Trans. Graph. 39, 4 (2020), 144. https://doi.org/10.
1145/3386569.3392375

A Example codes

Revisualization(s)

 Sequence, arrays as horizontal sequences.

Revisualization(s)

 Tree, a hierarchy shown as a tree.

Revisualization(s)

 Graph, a linked list shown as a graph.

Annotation(s)

 Label location of all items.
 Connect arrows between items in the two arrays.

Annotation(s)

 Label the type (“div”) for each node.
 Label nodes that have a dirty property with a “*”.

Annotation(s)

 Label “val” in place of each node’s value.
 Label “Element e” above node e.

Simplification(s)

 Hide value of each item.
 Abbreviate sub ranges.

Simplification(s)

 Hide value of each node.

Simplification(s)

 Hide value of each node.
 Fragment of the larger linked list.

Array insertion1

// The tree appears as following,

// with the starred nodes dirty:

// div [relayout-common-ancestor]

// / \

// *div *div

// / /

// *div *div

Document object m od el (DOM)2

Linked list3

valval

Element e

val

Figure 7: 1 An insertion operation into an array and the
affect it has on positions of the existing elements from MIT
6.006 Introduction to Algorithms [13]; 2 A data structure
which describes the logical pieces of web page as nodes and
objects from Chromium [9]; 3 A fragment of a doubly linked
list from Algorithm Design [24].

https://doi.org/10.1145/3491102.3501932
https://www.ietf.org/process/rfcs/
https://github.com/lume/kiwi
https://doi.org/10.1145/3313831.3376253
https://doi.org/10.1109/TSE.2014.2362924
https://doi.org/10.1145/2807442.2807459
https://www.youtube.com/watch?v=6VmA_whVxPc
https://doi.org/10.1145/1409720.1409726
https://doi.org/10.1145/1595696.1595731
https://doi.org/10.1145/1595696.1595731
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1109/TVCG.2017.2747545
https://ggplot2.tidyverse.org
https://doi.org/10.1007/3-540-45875-1_30
https://third-bit.com/sdxpy/
https://third-bit.com/sdxpy/
https://doi.org/10.1145/1518701.1518853
https://doi.org/10.1145/3386569.3392375
https://doi.org/10.1145/3386569.3392375
https://third-bit.com

	Abstract
	1 Introduction
	2 Related Work
	2.1 Roles of Visual Abstraction in Programming
	2.2 Visualizations of Runtime State
	2.3 Data Visualization Frameworks

	3 Abstraction Moves
	3.1 Methodology
	3.2 Building Diagrams with Abstraction Moves
	3.3 Overview of Abstraction Moves
	3.4 Reproducing Observed Diagrams
	3.5 Implementation Description
	3.6 Initial Results on User Experience and Usage Scenarios

	4 Discussion and Future Work
	4.1 Limitations of Translating a Content Analysis to a DSL
	4.2 Comparison with Existing Classifications
	4.3 Workflows Suitable to Abstraction Moves
	4.4 Future Work: Contextually Relevant Diagrams and Direct Manipulation

	5 Conclusion
	Acknowledgments
	References
	A Example codes

