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Abstract 
Tools to inspect runtime state, like print statements and debuggers, 
are an essential part of programming. Yet, a major limitation is 
that they present data at a fixed, low level of abstraction which 
can overload the user with irrelevant details. In contrast, human 
drawings of data structures use many illustrative visual abstrac-
tions to show the most useful information. We attempt to bridge the 
gap by surveying 80 programmer-produced diagrams to develop a 
mechanical approach for capturing visual abstraction, termed ab-
straction moves. An abstraction move selects data objects of interest, 
and then revisualizes, simplifies, or annotates them. We implement 
these moves as a diagramming language for JavaScript code, named 
Chisel, and show that it can effectively reproduce 78 out of the 80 
surveyed diagrams. In a preliminary study with four CS educators, 
we evaluate its usage and discover potential contexts of use. Our 
approach of mechanically moving between levels of abstraction 
in data displays opens the doors to new tools and workflows in 
programming education and software development. 

CCS Concepts 
• Human-centered computing → Information visualization. 
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1 Introduction 
Understanding code is hard. We have to simulate, in our mind, 
how a machine would execute each instruction; how data will be 
transformed across the life cycle of the program’s execution. To 
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help us, we rely on a variety of mechanical aids, like print state-
ments and debuggers, to see the runtime state. In these tools, we 
see data in a concrete display. As an example, while debugging, we 
might see an array update from values [3,2,1,4,3,8,0,1,9] to 
[0,3,2,1,4,3,8,1,9]. Then, it is up to us to deduce the abstract 
behavior of the code from these values, that is, the smallest element 
has moved to the front. Understanding the behavior from this dis-
play is overwhelming. It both (a) shows too much as most of the 
array is irrelevant to the operation, and (b) does not show enough as 
the points of interest, like the smallest element, are not called out. 
In other words, it does not display the most useful information. 

In contrast, human notations of data, like drawings and diagrams, 
make use of illustrative abstractions [15]. We might have drawn the 
array update as: [3,2,...0(𝑚𝑖𝑛) ...] to [0(𝑚𝑖𝑛) ,3,2,...], abbrevi-
ating superfluous elements and labeling the smallest value ‘𝑚𝑖𝑛’ to 
illustrate that it is has been pushed to the front. 

This work seeks to bridge the gap in abstraction between con-
crete displays of data in programming tools and conceptual draw-
ings. We conducted a content analysis of 80 programmer-produced 
diagrams sampled from real-world practice and instruction. We 
deduced step-by-step ways in which these diagrams are abstracted 
compared to a counterpart concrete display. We term these steps 
abstraction moves, which are comprised of two parts: a selection 
that describes the piece of data being abstracted, and one of three 
abstraction strategies: a revisualization (e.g. changing the visual 
layout from a list to a grid), simplification (e.g. abbreviating the 
data), or annotation (e.g. putting a label on part of the data). 

We then used the discovered abstraction moves to design a 
JavaScript-based diagramming language, named Chisel, for creating 
data structure diagrams through incremental shifts in abstraction. 
For example, to construct the earlier notation of the array, we can 
first select ranges of the concrete data [3,2,1,4,3,8,0,1,9] and 
abbreviate them, [3,2,...,0,...], then select the minimum element, 
[3,2,...,0,...] and label it: [3,2,...,0(𝑚𝑖𝑛) ,...]. The advantage 
of creating diagrams through Chisel is that it can: 

(1) be dynamic to changes in the data, if the array is updated, 
the process can be followed again, and the diagram would 
reflect the update (e.g. [5,1,...,-1(𝑚𝑖𝑛) ,...]). 

(2) be flexible across levels of abstraction, we can easily add and 
take away moves (e.g. no longer elide the start, [3,2,1,4,3, 
8,0(𝑚𝑖𝑛) ,...]). 
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(3) provide a visible record of abstraction, it describes assumptions 
about what is considered essential and non-essential about 
the data, which can then be scrutinized, adapted, and revised. 

Using Chisel, we were able to reproduce visual abstractions in 78/80 
diagrams sampled in our content analysis, and in a preliminary 
study with three computer science instructors and one teaching 
assistant, we found encouraging initial results on usability of Chisel 
and potential contexts of use. 

2 Related Work 
Visual abstraction transforms information into visual representa-
tions by abstracting away its idiosyncrasies to simplify, highlight, 
and summarize it [38]. Below, we survey the use of visual abstrac-
tions in programming and existing solutions to authoring diagrams. 

2.1 Roles of Visual Abstraction in Programming 
Programmers use visuals prolifically: they draw their software’s 
design, data structures, code, and its execution [3, 8, 20, 30, 42], and 
instructors rely on diagrams such as “list as a sequence of boxes,” 
“control flow as a graph,” “memory as a stack,” etc. [16]. Petre [35] 
finds that programmers omit information to reason across designs, 
and Mangano et al. [30] find that software designers shifted between 
levels of abstraction in their sketches to “focus on particular aspect of 
the design by omitting non-relevant details.” Fong et al. [17] studied 
diagrams of linked lists made by a community of Youtubers, some of 
whom shifted between different levels of abstraction. These works 
document the use of diagrams at varying levels of abstraction, but do 
not provide a clear vocabulary to operationalize visual abstraction, 
which this work aims to contribute. 

2.2 Visualizations of Runtime State 
Interfaces to inspect runtime state, like traditional debuggers, read-
eval-print-loop (REPLs), and print statements, are essential tools for 
programmers to understand and write code. Program visualization 
tools like Python Tutor [19], Projection Boxes [26], and CrossCode 
[21] automatically provide richer visualizations of runtime values 
during execution. However, across these tools, data is shown at a 
fixed low-level of abstraction: concrete values are shown in full 
detail, with little possibility of customization. 

Abstracted displays of program output are under-explored, and 
thus, their design space is unclear. To our knowledge, two prior 
works on interactive systems which use abstract displays exist: 
Curry [11]’s PAD where users record executions on abstract data, 
and McDirmid [32]’s abstract notation for manipulating sequences. 
Outside of interactive systems, Wilhelm et al. conducted a series 
of projects to automatically infer and show invariants of linked 
data structures using static analysis, facilitating focus on relevant 
aspects of the data [6, 34, 40]. These works do not cover the whole 
suite of common data structures, nor was their design grounded in 
the notations and abstractions programmers use in practice. 

2.3 Data Visualization Frameworks 
General purpose editors, like Figma, Inkscape, and Illustrator, enable 
manual assembly of diagrams with direct manipulation on primi-
tive marks and shapes on a canvas. However, graphical editors can 
quickly become tedious for making, updating, and exploring design 

alternatives [29]. To mitigate this tedium, programmatic visualiza-
tion frameworks facilitate diagramming by, e.g. scene manipulation, 
like D3 [5], or with declarative specifications, like Bluefish [36]. Pen-
rose [43], a diagramming tool for mathematical diagrams separates 
domain knowledge from the visual representation, which allows for 
reusable and extendable representations. The closest prior system 
to our target usage is Lau and Guo [25]’s Data Theater, which cre-
ates explorable explanations of Python code by mapping runtime 
values onto graphical objects using a declarative specification. 

The salient difference between Chisel and existing visualization 
frameworks is that Chisel is designed around diagrams of data struc-
tures and abstractions on them. To achieve the same outcome in, 
e.g., Penrose, a user would need to build a domain and style library 
that implements Chisel itself. The relationship between Chisel and 
Bluefish or D3 is similar. A more subtle difference is that Chisel 
uses mutating operations to gradually arrive at a diagram from a 
concrete display of data, which implies that diagrams cannot be en-
coded directly at the appropriate level of abstraction. We speculate 
that for illustrating conceptual ideas which are not parameterized 
by concrete data, our approach will provide little benefit. Instead, 
a Chisel program specifies a design space of diagrams that cuts 
across multiple levels of abstractions down to the concrete, which 
can prove helpful when concrete data is meaningful (e.g. when de-
bugging) or when concrete values can scaffold understanding. We 
further sketch out appropriate places to use Chisel in subsection 4.3. 

3 Abstraction Moves 
To discover an initial set of abstraction moves—i.e. visual opera-
tions that incrementally transform a concrete display of data to a 
diagrammatic representation—we conducted a content analysis of 
a wide-ranging corpus of data structure diagrams. 

Table 1: List of diagram sources. Count denotes the number 
of total diagrams collected from each source. 

Source Use Case Modality Count 

The Linux Kernel 1 Codebase ASCII 57 
Chromium Codebase ASCII 17 
RFCs 1–500 2 Design 

Standard 
ASCII 69 

Algorithm Design [24] Textbook Graphics 16 
Intro. to Algorithms [10] Textbook Graphics 87 
Crafting Interpreters [33] Textbook Graphics 66 
Software Design by Example [41] Textbook Graphics 34 
MIT Intro. to Algorithms [13] Lecture Drawing 40 
UW Applied Algorithms [2] Lecture Graphics 86 
UIUC Algorithms [14] Lecture Drawing 60 

3.1 Methodology 
3.1.1 Data Collection. We collected a corpus of diagrams from 
ten real-world sources spanning different use cases and modali-
ties (Table 1). We limited our scope to pictures of common data 

1The ASCII diagrams from Linux and Chromium use data collected in [20].
2The first 500 IETF RFCs [23], which are technical internet standards from 1969—1993. 
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structures: numbers, strings, lists, graphs, records, pointers, and 
combinations of them. More specialized representations like those 
embedded in Euclidean space (e.g. plots, or geometric shapes) were 
filtered out. Repeated visualizations of the same style from the same 
source were also filtered out. Our goal was not to produce counts 
or frequency statistics, but to have a diverse sample of ordinary 
data structure representations to describe visual abstraction. 

3.1.2 Sampling. Twenty diagrams were sampled at a time, two 
from each of the ten sources. To strike a balance between uniform 
sampling that reflect the diagrams in our dataset as well as to 
capture their variance, we sampled one diagram randomly and one 
selected by the first author to prioritize types of diagrams that have 
not yet been analyzed. 

3.1.3 Coding. The first author annotated each diagram by anno-
tating its data structure and the moves required to move from a 
plausible concrete display3 to the diagram (e.g. “hide all values 
in the list”). After each round of coding, the remaining authors 
reviewed the annotations, and the first author iterated on the code-
book based on their feedback. The process was concluded when 
no more variations were observed (𝑁 = 80). The first author then 
performed a round of deductive coding by revisiting the older codes, 
and re-annotating them with the derived codebook. The outcome 
of this analysis provided the broad framework and categories of 
abstraction moves. (Appendix A includes examples of diagrams 
annotated with the codebook.) 

3.1.4 Formalizing. We implemented the abstraction moves dis-
cerned in the codebook as operations in a JavaScript-based diagram-
ming language, Chisel, for visualizing runtime state. We constructed 
the prototype inductively by reproducing each of the 80 diagrams 
in the content analysis and maintained a close mapping between 
the qualitative codes and the operations in the language. As such, 
we were able to (a) evaluate if the basic categories in the content 
analysis and our syntax are logically consistent and expressive, (b) 
capture idiosyncrasies not detailed in the qualitative description 
but required when actually visualizing diagrams (e.g. visual styles), 
and (c) apply the framework generatively to create new diagrams. 

3.2 Building Diagrams with Abstraction Moves 
To demonstrate how abstraction moves can be used to specify a 
diagram, Figure 1 provides an illustrated workflow of partially 
recreating a diagram from our corpus of array partitions (Figure 1, 
top). Specifically, the diagram displays a list divided into groups of 
𝑛/3 (where 𝑛 is the length of the list), with each group labeled with 
its location. We start with a generic display 1 , and then: 

2 ...select the list; selections are shown with a colored overlay, 
3 ...revisualize the diagram to be shown as blocks instead of 

comma-separated-values, 
4 , 5 ...mutate the selection by partitioning it, and then simplify 

the partitions by clumping together the values into three 
larger sections, 

6 , 7 ...annotate locations of those sections onto the array and add 
connections between the sections. 

3The first author made an educated guess to underlying representation of concrete 
data using the context surrounding the diagram. 

let s = Select(L)2. 

Select the list.2 

1 Display list L. 

Reference Diagram 

1. Display(L) 

7. Clump(s) 

5 Simplify by clumping the parts into three wholes. 

8.
 

9.
 

10.
 

11.
 

12. 

13.
 

14.
 

15. 

LabelLocation(s, { 

    coordinates: L, 

    range: [0, Var('n')],

    remap_range: true
 

}) 

for (let i = 0; i < s.length - 1; i++) {

    Connect(s[i], s[i + 1])
 

} 

Annotate location range of each partition. 

Annotate connections between partitions. 

6 

7 

Revisualize(s, 'Sequence', { 

   style: 'Blocks' 
 

}) 

3.
 

4.
 

5. 

3 Revisualize the list as a sequence of blocks. 

6. s = PartitionSelection(s, 3) 

4 Partition selection into three evenly-sized parts. 

Figure 1: A partial recreation of a diagram from Cormen et al. 
[10]’s Introduction to Algorithms (top), where it was used to 
illustrate the worst-case lower bound of insertion sort. We 
assume that the list is stored in a variable L, and its length 
stored in n. 
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1 Remove clump. 2 Change the number of partitions. 

s = PartitionSelection(s, 2)3 3 Update inputs. style: 'Comma Separated''Blocks'

4 Change visual style 

Figure 2: Variations on array partitions in Figure 1: 1 removes a simplification; 2 updates the number of partitions to two; 3 

halves the length of the input list; and 4 updates the initial visual style to be a comma separated list instead of blocks. 

Having reconstructed the diagram through abstraction moves, we 
can navigate between levels of abstraction (by adding, removing, 
and varying moves), as well as different states of data (Figure 2). 

3.3 Overview of Abstraction Moves 
Below we describe abstraction moves and Chisel’s syntax. 

3.3.1 Display. To initially render a diagram, Chisel uses 
Display(𝑑 ), which takes data as input and adds a diagram to the 
scene. It supports ordinary data structures: primitives (strings, 
numbers, booleans, nulls), combinations of them (arrays and 
objects), and variables. 

Data 𝑑 := 𝑛𝑢𝑚 | 𝑏𝑜𝑜𝑙 | 𝑠𝑡 𝑟 𝑖𝑛𝑔 | 𝑛𝑢𝑙𝑙 | 𝑎𝑟 𝑟 𝑎𝑦 | 𝑜𝑏 𝑗 𝑒𝑐𝑡 | 𝑣 𝑎𝑟 𝑖𝑎𝑏𝑙𝑒 
Display provides visuals resembling a typical debugger... 

(1) ...primitives are shown with their value, 
(2) ...arrays are shown as horizontal comma separated values, if 

it contains one or more objects, then it is shown as a vertical 
list labeled with its indices, 

(3) ...objects are shown as an indented hierarchy, 
(4) ...variables are shown with their name above the their value. 

3.3.2 Selections. Selections are ways to refer to subsets of data for 
later revisualizing, simplifying, or annotating. A selection can be to 
a data value (e.g. first item of a list), a contiguous span (e.g. a row 
of items in a grid), or to a union of other selections (e.g. the first 
and last item in a list). 

Selection 𝑠𝑒𝑙 := data selection | span selection | union selection 

The basic selection operator accepts multiple data values to be 
selected: Select(𝑑1,𝑑2,...). The selections can then be merged 
into contiguous spanning selections using SpanSelection(𝑠𝑒𝑙 ). 
We also provide selections to select subparts of data, which, along 
with the basic selection strategies, are illustrated in Figure 3 A . 

3.3.3 Revisualizations. We categorized data structures being visu-
alized as graphs, sequences, and grids: 

(1) A node link graph, used to show data structures such as 
graphs or a pointer data structure. As specific cases of graphs, 
trees and indented hierarchies, can visualize objects like bi-
nary trees. 

(2) Sequences, to visualize ordered collections, e.g. arrays, strings, 
bits, and memory layouts. 

(3) Grids, to visualize 2D collections, matrices, or data tables. 
Chisel provides Revisualize(𝑠𝑒𝑙 , graph | tree | hierarchy | se-
quence | grid), to revisualize a selection under different visual 
forms. Supported revisualizations are illustrated in Figure 3 B . 

Data formats. For data structures where JavaScript does not 
define a format, Chisel provides a canonical format... 

(1) ...graphs can be made from (a) objects with both vertices 
(a list of objects) and edges (a list of vertex index pairs) 
attributes or (b) constructed as a pointer graph from any 
key-value object or an array. 

(2) ...trees can be made from objects with a children (a list of 
objects) attribute, or attributes left and right. 

(3) ...grids can be created from two dimensional arrays or from 
tabular data (i.e. a list of objects which share attributes). 

Arranging sub-diagrams. Some diagrams in our corpus used lay-
outs within diagrams, e.g., aligning two arrays in parallel. Chisel 
supports this in an ad-hoc way by collecting the sub-diagrams to be 
organized into a larger data structure and revisualizing it. This basic 
approach accommodates the diagrams in our content analysis—but 
in practice these arrangements could be specified more explicitly 
by e.g. using relational constraints as in Bluefish [36]. 

3.3.4 Simplifications. Simplifications describe ways information is 
omitted in the display. We categorized four types of simplifications. 

(1) Hide the displayed value. 
(2) Clump a span of values into one shape. The size of the clump 

is proportional to the number of values underneath it (e.g. a 
clump of two values will be smaller than that of ten values). 

(3) Abbreviate is similar to clump, but collapses a span of values 
into an ellipses with a fixed size and shape. 

(4) Fragment isolates data within a larger container by explicitly 
hiding the edges of the container. 

Figure 4 C provides the signatures and illustrates examples of each 
simplification strategy as implemented in Chisel. 

3.3.5 Annotations. Annotations add information to the display: 

(1) Styles update the appearance of a value, e.g. changing its 
background color, adding outlines, etc. Chisel uses CSS style 
declarations to modify appearance of elements. In addition 
to styling individual data values, an encircled region around 
multiple data values is also available for styling. 

(2) Labels add text around (or inline with) the selected data. 
These are versatile: they can attached be to an identifier or 
name, a property satisfied by the selected data (e.g. putting 
‘𝑥 ≠ 0’ next to non-zero elements), a textual description, etc. 
Labels also annotate a property of selected data, such as its 
index locations (e.g. 0, 1, or named like 𝑛 − 1), or the length of 
a spanning selection (e.g. 5, or named like 𝑛). Chisel supports 
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SpanSelection(sel) 

s = Select(L[0], L[1], L[3])
 

s = SpanSelection(s) 

Selects contiguous ranges in the 
input selection. 

s = Select(L[2])
 

s = InvertSelection(s) 

InvertSelection(sel) 

Selects the rest of the elements 
in a container. 

s = SelectByCondition(L, d => d > 0) 

SelectByCondition(d, d      bool) 

Recursively selects parts of data that 
satisfy the provided condition. 

Select(d1, d2, ...) 

Selects data corresponding to 
one or more expressions. 

s = Select(L[0], L[1]) 

s = Select(L)
 

s = PartitionSelection(s, 2) s = SelectRows(M, 0) s = SelectCols(M, 0, 2) 

PartitionSelection(sel,num) 

Splits a selection into specified 
number of evenly-sized parts. 

Specific to sequences and grids. 

s = SelectNodes(G) 

SelectNodes(d) 

Selects individual nodes of a 
graph, tree, or hierarchy. 

s = SelectEdge(G.vertices[0], 

G.vertices[1]) 

SelectEdge(d1, d2) 

Selects an edge between two 
nodes in a graph or a tree. 

s = SelectSubtree(T.right) 

SelectSubtree(d) 

Selects a subtree in a tree. 

Specific to graphs, trees, hierarchies. 

SelectRows(d, a:num, b?:num) 

Selects range of rows from  till . If  is not 
specified then selects the row at . 

a b b 

a

Specific to grids. 

SelectCols(d, a:num, b?:num) 

Selects range of columns from  till . If  is 
not specified then selects the column at .

a b b 

a 

Selections. 

Revisualizations. 

A 

B 

Revisualize(s, 'Graph', { pointer_graph: true }) 

...with options to adjust layout, select 
directedness, and to construct a pointer graph. 

Revisualize(s, 'Graph') 

Revisualize(sel, 'Graph', ...) 

Revisualize(s, 'Tree') 

...inherits layout options from the graph, 
and an option to trim null leaves. 

Revisualize(sel, 'Tree', ...) 

...inherits layout options from the graph. 

Revisualize(sel, 'Hierarchy', ...) 

Revisualize(s, 'Hierarchy') 

...with options to adjust layout, and set style as either 
comma separated, space separated, or blocks. 

Revisualize(sel, 'Sequence', ...) 

Revisualize(s, 'Sequence', { 

  style: 'Blocks',
  orientation: 'Vertical' 

}) 

...with options to adjust layout and sho w borders. 

Revisualize(s, 'Grid') 

Revisualize(s, 'Grid') 

Revisualize(sel, 'Grid', .. .) 

Figure 3: Function signatures and examples of the supported selections ( A ) and revisualizations ( B ). 
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Collapses the selection(s) into a clump. 

Clump(sel) 

Puts ellipses in place of the selection. 

Abbreviate(sel) 

s = Select(L[1], L[2])
 

s = SpanSelection(s)
 

Hide(s) 

s = Select(L[1], L[2])
 

s = SpanSelection(s)
 

Clump(s) 

s = Select(L[1], L[2])
 

s = SpanSelection(s)
 

Abbreviate(s) 

s = Select(L[1], L[2])
 

s = SpanSelection(s)
 

Fragment(s) 

Hides the values under selection(s). 

Hide(sel) 

Elides the inverse of the selection. 

Fragment(sel) 

s = Select(L[3])
 

Style(s, { 

    background: 'black', 

    color: 'white' 
 

}) 

Applies a CSS style on the elements in selection. 

Style(sel, styles) 

s1 = Select(...L1)
 

s2 = Select(...L2)
 

Connect(s1, s2) 

Connects elements in s1 to elements 
s2 using arrows, with options to 
adjust mapping and directedness. 

Connect(sel1, sel2, ...) 

s = Select(...L)
 

LabelLocation(s) 

Label the location of the selected objects, with options to...

   ...compute location relative to an array (coordinates),

   ...to specify a start and end (range),

   ...and to remap the coordinates onto the range (remap_range). 

LabelLocation(sel, text?: string     string, ...) 

Labels the name of selected objects based on variable names. 

Labels the length of selected objects. 
(Requires the selection to be an array). 

LabelIdentifier(sel, text?: string     string, ...) 

LabelLength(sel, text?: string     string, ...) 

Variations 

s1 = Select(L[1])
 

s2 = Select(L[3])
 

Label(s1, 'X')
 

Label(s2, d => d*3, { placement: 'top' }) 

Put a label inline or on outset of selected objects. 

Label(sel, text: string | (d string), ...) 

s = Select(T, T.right)
 

s = SpanSelection(s)
 

Encircle(s) 

Puts a background 
surrounding the selection. 

Encircle(sel) 

Simplifications. 

Annotations. 

C 

D 

Figure 4: Function signatures and examples of simplifications ( C ) and annotations ( D ). 

adding custom labels, as well as specialized functions for 
labeling locations, names, and lengths of the selected items. 

(3) Connection annotations add a visual link (e.g., an arrow) be-
tween data selections. For example, to annotate data move-
ment, or to visualize a connection between data structures 
(e.g., a shared pointer). Connections can exist between differ-
ent diagrams (e.g. before-after snapshots of a data structure) 
or within a diagram (e.g. data movement of values). In Chisel, 
connection annotations are simplified as connecting arrows 
(which can either be directed or not). 

Figure 4 D shows each annotation strategy implemented in Chisel. 

3.4 Reproducing Observed Diagrams 
Chisel’s syntax was constructed inductively by reproducing each 
of the 80 observed diagrams. The first author then annotated each 
code from the content analysis with it either being successfully 
reproduced, partially reproduced (i.e. an alternate representation 
that captures the same meaning), or not reproduced at all (i.e. unable 
to represent the meaning of the code). 

Table 2 provides a granular tally of replication success per code 
in the content analysis. We were able to accommodate for and 
replicate 78/80 diagrams. Figure 5 showcases some of the diagrams 
that were reproduced. A gallery of all diagrams reproduced, along 

Table 2: Tally statistics on the codes reproduced by our system 
grouped by the primary data structure in the diagram. 

Data # Revisualize Simplify Annotate 

Graph 15 16/16 (100%) 17/17 (∼100%) 23/27 (∼85%) 
Tree 17 18/22 (∼80%) 16/18 (∼90%) 31/33 (∼95%) 
Array 18 25/26 (∼95%) 17/18 (∼95%) 30/31 (∼95%) 
2D Array 7 11/12 (∼90%) 10/11 (∼90%) 11/11 (100%) 
Memory 23 31/32 (∼95%) 27/30 (90%) 56/60 (∼95%) 

with the codes is provided at: https://abstraction-moves.github.io/. 
Chisel specifications contained 21 lines of code on average across 
the replicated diagrams. 

3.4.1 Aspects of diagrams that were not reproduced. Two diagrams 
contained visuals that we were not able to reproduce. Figure 5 B 

is a diagram of a binary tree where a branch in the left subtree is 
visible inside a clumped subtree. Chisel does not support showing a 
fragment of data inside a container that has been simplified. Figure 5 
C shows a matrix where the first two and the last two rows contain 
abbreviated columns (i.e. 0...0), but those abbreviation don’t carry 

https://abstraction-moves.github.io/
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Example Reproductions 

Binary Tree Tridiagonal Matrix

A 

B C 

Reference Diagram Partial reproduction

* Solves a linear system where the matrix is

*

*
*
*
*
*
*

* @param subDiag The sub diagonal of the mat

* @param mainDiag The main diagonal of the m

* @param supDiag The super diagonal of the m
 
* ... 

    |dia(0) sup(0)    0    0     ...    0|

    |sub(0) dia(1) sup(1) 0      ...   0|

A =|                ...                |
 
    |0 ... 0 sub(n-2) dia(n-1) sup(n-1)|
 
    |0 ... 0     0     sub(n-1)    dia(n)|
 

Reference Diagram Partial reproduction 

Collision in a hash table 

Array partition 
Tree annotated with depths 

Memory format 
Website proxy tree Memory model 

Radix sort 
Binary search tree 

Matrix quadrants 
Directed graph 

Matrix graph 

Linked list 

Job scheduling 

Data table 

Queue List of lists 
Trie for domains 

Merging two lists 

DOM Tree 

Alternate view of a sequence of bits 
Array insertion 

Merge sort call graph 

Binary tree 

Syntax tree 

Bit checksum 

Tagged Boolean Red black trees List of linked lists Binary trees 
Memory address mapping 

Figure 5: A Example gallery of reproduced diagrams. At the bottom are two diagrams whose abstraction Chisel was unable to 
capture, along with the partial reproduction: B A binary tree diagram, from MIT’s Introduction to Algorithms [13] shows a 
branch as part of a larger subtree, and C Tridiagonal matrix, from Chromium [9] which uses partial abbreviations on the rows. 
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let n = 1 + 2
 

let y = make_tree(n)

 

function make_tree(dep 

Display(y)
 

let s = Select(y)
 

Revisualize(s, 'Tree') 

User Code 

Instrumented Code 
Diagram Output 

let n = tag(3)
 

let y = tag({... 

Call(Display, L)
 

let s = Assign('
 

Call(Revisualize 

let n = tag(3)
 

let y = tag({...}) 
Evaluate and Tag 
Variable Values 

AST Rewrite 

JavaScript Evaluator 

Abstraction Moves 

Figure 6: An overview of the pipeline of the prototype. We first execute the user’s code and extract and tag variable values’ 
which are joined with an instrumented version of the abstraction specification. 

into the rest of the rows, which makes the abbreviation inconsistent 
with the grid visual structure. 

3.5 Implementation Description 
The prototype system is an in-browser JavaScript web application. 
Figure 6 provides an overview of the architecture. Below, we will 
detail two implementation details: data provenance tracking and 
data-to-visual mappings. 

3.5.1 Data provenance tracking. User’s data may not start in the 
format required to display it appropriately, e.g. a graph may be 
stored as an adjacency-matrix, while Chisel requires it to be a col-
lection of vertices and edges. So, the user must first transform the 
data into the format accepted by Chisel. However, after the trans-
form, it can still be preferable to perform selections in terms of 
the original structure, e.g. select a row in an adjacency matrix, and 
have that selection propagated to the visual representation. There-
fore, we track data as it is transformed. Chisel rewrites variable 
assignments to box each value and sub-value in a wrapper that con-
tains a unique identifier (see Figure 6), e.g. [5,2,3] becomes a data 
structure of objects: Array 3 (Num(5) 0 ,Num(2) 1 ,Num(3) 2). We use 
custom handlers to maintain data provenance, e.g. the expression 
1+2 is rewritten to BinaryExpression(Num(1) 0 ,Num(2) 1) which 
evaluates to Num(3)0,1. Operating on tagged data means that Chisel 
is a subset of JavaScript, which so far includes the core constructs 
(loops, conditionals), standard libraries on arrays (filters, slice, map), 
as well as the Math standard library. 

3.5.2 Technical Architecture. The prototype is a JavaScript web 
application developed using TypeScript. We use acorn [1] for pars-
ing JavaScript into an AST, which is then traversed and rewritten. 
We use Kiwi [28], a global constraint solver, for computing the 
diagram layout, and math.js’ [12] algebra system to display named 
indices relative to the actual data-length. There are some notable 
implementation limitations: 

(1) Visual layouts are not done as carefully as they could be. For 
example, the graph layout renders a tree, and then adds back-
edges for cycles. In practice, a graph rendering algorithm 
should be used (e.g. graphviz [18]). 

(2) The current implementation requires a specific operator or-
der (revisualization, simplification, then annotation opera-
tions), to avoid failure states. This is not inherit to abstraction 
moves, but a limitation of the current prototype. 

(3) Potential optimizations for performance. The diagram in 
Figure 2 1 renders within ∼ 200𝑚𝑠 on a twelve item array, 
and takes over ∼ 5000𝑚𝑠 to render a fifty item array on our 
machine. This poor scaling in render time is caused by the 
global constraint layout solver and is limiting since visual 
abstractions are perhaps the most helpful when making sense 
of large amounts of data. An alternative is to use a local 
constraint solver along with a separate engine for handling 
global constraints when needed, as in Bluefish [36]. 

3.6 Initial Results on User Experience and 
Usage Scenarios 

Our core contribution is a description of visual abstractions in 
data structure diagrams, and a reification of those descriptions into 
Chisel. The syntax is intentionally interpretive and not grounded in 
any particular context of use or task. To understand the experience 
of working with the language and discover possible contexts of use, 
we conducted a preliminary study with four introductory computer 
science (CS) educators. We selected CS educators as they will likely 
find the most immediate relevance from Chisel since they may be 
manually designing diagrams of data structures and 7/10 diagram 
sources in our content analysis were from educational contexts. 

3.6.1 Participants. We recruited three CS instructors (𝑃1, 𝑃2, 𝑃4) 
and one graduate student teaching assistant (𝑃3), see Table 3. Par-
ticipation was voluntary without compensation. Only 𝑃2 had prior 
experience with using JavaScript. 

3.6.2 Study Procedure. Each study lasted 60 minutes, and consisted 
of three parts: (a) a tutorial of the system with four worked examples, 
(b) a guided construction of a diagram,4 and (c) a semi-structured 
interview on the shortcomings/successes of the notation and its 
potential uses. The study is limited: the sample size is small and the 
the session was closely shepherded by the experimenter. Our goal 
was not necessarily to teach Chisel in the span of 30–40min (not 
including interview time), but to get participants’ initial reactions 
to using it and understand its potential contexts of use. 

3.6.3 Usability Issues. In general, we were encouraged by the use 
of Chisel in the short span of the study, 𝑃4 even found it to be 
“pretty intuitive most of the time...I thought it was kind of fun!” All 

4For the instructors, 𝑃1 , 𝑃2 , 𝑃4 , the target diagram was preselected from their slides 
from a recent class, for 𝑃3 this was selected from our corpus. 
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Table 3: Participant demographics. Teaching includes experience as a teaching assistant. 

ID Title Teaching 
Experience 

Subjects of recently taught courses 

𝑃1 Associate Teaching Professor 10 years Intro to Python, Intro to Data Science, Data Science in Practice 
𝑃2 Assistant Teaching Professor 11 years Practice and Application of Data Science, Data Visualization 
𝑃3 Graduate student 4 years Intro to Python 
𝑃4 Professor, Teaching Stream 35 years Intro to Programming (in Python), Software Design (in Java) 

participants found the syntax to be reasonable, “from an API [stand-
point], the names make sense” (𝑃1), but would need more time to 
get comfortable with it. There were multiple breakdowns during 
the usage which we summarize below. 

Difficulty discerning units of selection. A selection in Chisel can 
span over multiple items (e.g. [1,2,3,4]) or be a union of multi-
ple items (e.g. [1,2,3,4]). All participants encountered difficulties 
disambiguating if the selection was to individual items or to a span: 
“am I selecting two things in a list or am I selecting one list with two 
things?” (𝑃2). 𝑃3 and 𝑃4 also encountered situations where they 
used an incompatible unit of selection as input to an operation. 𝑃3 
suggested that confusion between individual and spanning selec-
tions may be resolved with better scaffolding when introducing the 
syntax5 , and integrating type signatures of the operations into the 
editor to learn valid inputs into the various moves. 𝑃2 suggested 
adding more explicit visual cues, e.g. to use a “visual indicator...like 
corners around [the selection]” if it is a spanning selection. 

Lack of alternate paths and flexibility in authoring. Some strate-
gies that participants reached for were unsupported. For example, 
instead of using PartitionSelection to split a large selection 
into smaller evenly sized groups, 𝑃4 wanted to “start with all of the 
values in L selected separately and then try to group them,” and 𝑃3 
wished to index into data by indexing into a selection, “I wanted to 
do s[0]...and so then I was just stuck.” Similarly, while navigating 
the diagrams at this level of description was appreciated, “it’s cool 
how like the grids and trees things just work out-of-the-box...as an 
instructor, I’m like, the more hard coded things you can give me, the 
better, because I don’t want to spend my time like pixel pushing the 
diagrams” (𝑃2), 𝑃1 and 𝑃2 also expressed concerns of not having 
control to tweak the diagrams, “I wonder how often the arrows actu-
ally do what I want?” (𝑃1). These concerns suggest building on a 
general-purpose diagramming library as a base for Chisel, which 
can be extendable to new diagrams and workflows. We discuss 
opportunities for doing so in subsection 4.1. 

3.6.4 Usage scenarios. We also asked participants if Chisel is rele-
vant to their teaching and its potential uses (if any). 

Creating diagrams offline. All participants mentioned potential 
for Chisel to help them prepare lecture slides. For 𝑃2, the flexibility 
of picking the revisualization is particularly helpful: “often times 
when we teach graphs...sometimes it’s an adjacency list, sometimes 
it’s like a dictionary with vertices and edges.” 𝑃4 mused on using 
it to compare algorithms, when “we’re teaching you insertion and 

5The first example in the tutorial was the same as Figure 1, which implicitly creates 
three span selections through PartitionSelection. 

selection sort, let’s visualize the invariants of the two, and then we 
[as a class] can visually compare them.” 𝑃3 and 𝑃4 also mentioned 
using it to typeset diagrams for use in print: 

“I would totally see using this to generate diagrams for a 
paper I’m writing...having it automatically constructed 
makes it, I think, well worth the effort because I might 
want to change my input but keep the same view of the 
output...that’s what got me excited at the very beginning 
of this, because I was thinking back to the diagrams we 
drew for the Java textbook that we wrote.” (𝑃4) 

Creating diagrams interactively. 𝑃2 and 𝑃4 proposed to use Chisel 
interactively during lecture. 𝑃2 would like to experiment with dia-
gramming alongside the students as a way to scaffold their learning: 

“I think students would benefit a lot from being able to 
move really slowly...if [Chisel] worked really well, and 
I could make diagrams like very quickly or live even 
then I can imagine myself commenting out parts of this 
and then re-commenting it back to gradually show like 
one row [in a data table] being added at a time.” (𝑃2) 

𝑃4 would use Chisel to test different inputs live in class, “it’s the 
what if questions that always happen. What if the list isn’t a length 
that’s divisible by three? What if we’ve got an extra element? What if 
the smallest item is at the front?” We also floated to 𝑃2 and 𝑃4 why 
existing program visualization tools, like Python Tutor [19], did 
not cover these use cases. To which, they responded that the level 
of description and visual encoding was fixed: it would “just show 
you the before and after” (𝑃2), and is “just a memory model, it’s not 
a visualization tool.” (𝑃4). 

4 Discussion and Future Work 
We have presented abstraction moves, ways to incrementally shift a 
concrete data display into a customized diagram. Below, we reflect 
on limitations of our description and potential usage contexts. 

4.1 Limitations of Translating a Content 
Analysis to a DSL 

When designing Chisel, we aimed to maintain a close mapping be-
tween the qualitative coding and the syntax. Translating qualitative 
codes into operations may have helped with the high coverage over 
the coded diagrams and provided meaningful names, but it has also 
meant that similar operations and their variations were not unified 
to form a smaller and more composable API. Below, we speculate 
on potential areas of unification to reduce the API surface. 



CHI ’25, April 26–May 01, 2025, Yokohama, Japan Devamardeep Hayatpur, Brian Hempel, Richard Lin, and Haijun Xia 

4.1.1 Selections. There are ten different functions for specifying 
selections, six of which are for specific data structures. All these 
functions are, broadly, different ways of selecting subparts of a data 
structure. Instead of using specialized functions, we may use a more 
generic method which generalizes to data types outside the ones 
supported, e.g. using algebraic data types to specify selections via 
pattern matching. 

4.1.2 Simplifications and annotations. All four simplification func-
tions are closely linked to each other. Abbreviate and Hide are slight 
variations on Clump, and Fragment effectively clumps the inverse 
of the current selection. Moreover, the relationship between simpli-
fications and annotations is not yet clear. For example: 

(1) We initially included a category for replacing a data value 
with a label, which was later decomposed to a simplification 
(Hide) plus annotate (Label). 

(2) We could have assumed that all lists show indices by default 
and those indices must be simplified away (instead of added 
on with Label Location). 

(3) We could have conceptualized Encircle as a container that is 
yet to be simplified into a clump. 

These suggest a more unified grammar for reducing and adding 
information. A useful theoretical framework for generalizing ab-
stractions might be Brüggemann et al. [7]’s the Fold—a structure 
for describing interactive data visualizations which includes opera-
tions for explication (revealing information), implicitation (hiding 
information), and complication (adding dimensions of information). 

4.1.3 Revisualizations. Chisel includes preset mappings of 
data structures to visual structures through different calls to 
Revisualize. This makes it brittle to any new visual types, e.g. 
something simple, like setting the height of a visual mark to 
a variable value is beyond the current syntax’s reach. We may 
instead build on a grammar of graphics approach (e.g. similar 
to ggplot2 [39]), to provide a composable and more incremental 
approach for building graphics. 

4.2 Comparison with Existing Classifications 
Our description of abstraction moves reaffirms existing categoriza-
tions of diagrams. For example, we identified a small number of 
visual structures in data structure drawings (graphs, sequences, 
grids), which may be expanded to more, e.g. maps and plots [4]. 
Our description of annotation closely matches annotation cate-
gories uncovered by Head et al. [22]’s analysis of augmented math 
equations (e.g. Label, Connection, and Encircle correspond to their 
categories of text labels, connector, and background respectively). 
An under-explored category in prior work that is surfaced by our 
analysis are simplifications. To our knowledge, the closest notion is 
Hayatpur et al. [20]’s notion of abstractions in ASCII drawings, in 
which they categorize two broad strategies of abstraction as either 
unpatterned elision where the omitted content cannot be inferred 
(e.g. [x,...,y]) or patterned elision where the omitted content has 
an inherent order (e.g. [1,2,...,10]). Abstraction moves surfaces 
primitive operations which omit content (e.g. Abbreviate, Hide) to 
mechanize these broader strategies. 

4.3 Workflows Suitable to Abstraction Moves 
As mentioned earlier, the benefit of abstraction moves is that they 
are dynamic to changes in the data, flexible across levels of abstraction, 
and provide a visible record of abstraction. We now sketch how these 
qualities can be used in instruction and software development. 

4.3.1 Instruction. 

(1) Dynamic to changes in the data. To teach an algorithm, an 
instructor often makes a slide showing how the algorithm 
works on a small input data. However, this is an arduous 
and brittle process: the slide is manually created for each 
input data they wish to demonstrate. And, as mentioned by 
𝑃4, if a student asks about an edge case in class, the static 
slides are of no help. Instead, if the diagram was recorded 
as a sequence of abstraction moves, the instructor could 
improvise lessons by updating the concrete data live which 
updates the diagram. 

(2) Flexible across levels of abstraction. To transfer knowledge 
from one situation to another, an instructor often present 
variations of a problem to communicate essential features 
of it by varying non-essential ones [27]. Abstraction moves 
provide the ability for the instructor to define what is essen-
tial and what is non-essential interactively. For example, in 
a merge sort algorithm, the diagram might start with con-
crete values, then the half-way point is labeled, and then 
the two halves are clumped. Chisel could be extended to 
support animated unfolding of the diagram in order to help 
scaffold understanding (this type of interaction is also im-
plied by 𝑃2’s proposal for using Chisel to slowly reveal a data 
transformation). 

(3) A visible record of abstraction. Persistence allows for curat-
ing and standardizing diagrams. After creating abstraction 
moves to illustrate one algorithm, an instructor can share it 
with their colleagues, and collaboratively develop pedagogi-
cal material. 

4.3.2 Software Development. 

(1) Dynamic to changes in data. Since the diagram is responsive 
to changes in data, it can be written once and then used to 
illustrate many different variations of the same data struc-
ture, e.g. to illustrate test cases or edge cases of an algorithm. 
Indeed, in their study of ASCII diagrams from open source 
codebases, Hayatpur et al. [20] found illustrating test cases 
as one of the key roles that diagrams play. 

(2) Flexible across levels of abstraction. A diagram made with 
abstraction moves can become a unifying representation 
for high-level, conceptual documentation down to low-level 
debug views. An array might initially be illustrated at a high-
level in the documentation with labels to relevant locations 
but mostly elided, and then later be reused for debugging by 
displaying the values in their full detail while keeping the 
labels to relevant locations. 

(3) A visible record of abstraction. Abstraction moves can also en-
able development of debugger views. They may be packaged 
and shared in debugging tools (e.g. through GUI controls, 
letting other programmers easily apply them). 
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4.4 Future Work: Contextually Relevant 
Diagrams and Direct Manipulation 

Using Chisel requires learning a syntax which may be difficult to 
grasp. Two ways in which abstraction moves might become more 
integrated into programming workflows can be through recommen-
dation systems and direct manipulation: 

4.4.1 Recommendation system for diagrams. To mitigate some te-
dium of writing Chisel, we could use the user’s code that is being 
diagrammed (e.g. its variable names, indexes, scope) to infer con-
textually relevant diagrams as a starting point. This becomes more 
relevant if Chisel is integrated into an ordinary IDE where multi-
ple diagrams co-exist in a code file and are attached to different 
code snippets. For example, variables declared in a scope can be 
automatically displayed. If an index into a list is used, e.g. L[i], 
then a diagram where i is labeled on L can be suggested. Or, if 
the diagram is attached to a loop which reads one element from 
L at a time then the other elements can be elided. More general 
abstractions might also inferred by program analysis techniques 
like concolic execution [37] to collect abstract relations which can 
be mapped to visual abstractions. 

4.4.2 Specifying abstraction moves via direct manipulation. Graphic 
editors like Powerpoint and Photoshop operate by principles of 
direct manipulation (DM). Chisel could profit from a DM metaphor 
rather than a programming languages one. For example, the user 
might directly scrub over a portion of the display using their cursor, 
and then open a menu to apply one of the abstraction moves. DM 
may eliminate the need to internalize syntax and lower the barrier 
to entry. Yet, open questions on the specific interactions remain: 

(1) Disambiguating interaction intent, e.g. if the user scrubs over 
the first two elements of the array L: [1,2,3,4], how can 
we disambiguate between L[0:2], or L[0:L.length/2]? 

(2) Specifying control flow, e.g. to select by a condition, like se-
lecting only the non-null values in the diagram? 

Two approaches to these problems can be to either (a) use automa-
tion, e.g. using program synthesis to guess intended operation from 
demonstrations [31], or (b) present both the syntax and a limited 
direct manipulation view which provides a reasonable trade-off 
between ease-of-use (from the DM metaphor) and expressiveness 
(from the syntax). 

5 Conclusion 
We have demonstrated how abstraction moves—shifts in a data’s 
display—enable creating illustrative diagrams from concrete data 
values. Through a content analysis of 80 programmer-produced 
diagrams, we discovered three overarching abstraction strategies: 
revisualizations, simplifications, and annotations, as well as selections, 
which specify the objects to be abstracted. We then implemented 
abstraction moves in a JavaScript-based prototype that is able to re-
produce 78/80 diagrams. The ability to make these customized views 
of data might enable new workflows in programming education, 
e.g. interactively switching between levels of abstraction during a 
lecture, and software development, e.g. building task-specific debug 
views that can be packaged and shared with others. 
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A Example codes 

Revisualization(s) 

 Sequence, arrays as horizontal sequences. 

Revisualization(s) 

 Tree, a hierarchy shown as a tree. 

Revisualization(s) 

 Graph, a linked list shown as a graph. 

Annotation(s) 

 Label location of all items. 
 Connect arrows between items in the two arrays. 

Annotation(s) 

 Label the type (“div”) for each node. 
 Label nodes that have a dirty property with a “*”. 

Annotation(s) 

 Label “val” in place of each node’s value. 
 Label “Element e” above node e. 

Simplification(s) 

 Hide value of each item. 
 Abbreviate sub ranges. 

Simplification(s) 

 Hide value of each node. 

Simplification(s) 

 Hide value of each node. 
 Fragment of the larger linked list. 

Array insertion1 

// The tree appears as following, 

// with the starred nodes dirty:
 

//        div [relayout-common-ancestor]
 

//       /    \
 

//    *div   *div
 

//     /       /
 

// *div    *div 

Document object m od el (DOM)2 

Linked list3 

valval 

Element e 

val 

Figure 7: 1 An insertion operation into an array and the 
affect it has on positions of the existing elements from MIT 
6.006 Introduction to Algorithms [13]; 2 A data structure 
which describes the logical pieces of web page as nodes and 
objects from Chromium [9]; 3 A fragment of a doubly linked 
list from Algorithm Design [24]. 
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