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Figure 1: Sculpin is a programming-by-demonstration (PbD) system for JSON. Sculpin is versatile: it can wrangle and extract 
sub parts of JSON ( 1 ), or create interfaces atop it ( 2 ). In Sculpin, a user refines a selection and uses it to perform actions on the 
data underneath. User actions are recorded into a timeline, which forms a reusable program. 

Abstract 
Many end-user programming tasks require programmatically pro-
cessing JSON, wrangling it from one format to another or building 
interactive applications atop it. But end-users are impeded by the 
indirectness and steep learning curve of textual code. We present 
Sculpin, a direct-manipulation environment supporting a broad 
range of JSON-transformation tasks. A user of Sculpin transforms 
JSON data step by step, recording a program in the process. Sculpin 
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makes three design commitments to ensure directness and versa-
tility: (1) steps are small and precise, not inferred; (2) steps are 
general-purpose and open to re-appropriation; (3) steps operate on 
JSON itself, rather than on a limited intermediate representation. 
To support these commitments, Sculpin introduces a mechanism of 
sculptable selections: the user can direct their action by guiding a 
selection on top of the data through small steps like generalization 
and hierarchical navigation. Sculpin also extends JSON with em-
bedded interface elements like form inputs and buttons, allowing 
applications to be sculpted incrementally from source data. We 
demonstrate the breadth and directness of Sculpin in use-cases 
ranging from wrangling data to building applications. We evaluate 
Sculpin through a heuristic analysis, situating it in a broad space of 
programming systems and surfacing limitations such as difficulties 
editing preexisting programs. 
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1 Introduction 
JSON (JavaScript Object Notation) is a flexible, lightweight rep-
resentation of data that has emerged as a pervasive standard in 
the Web era. Data ranging from API messages to document for-
mats to domain-specific programming languages are often rep-
resented as JSON. Consequently, programmatically transforming 
JSON (processing it, visualizing it, and building interfaces atop it) is 
a high-leverage skill for both professional software engineers and 
technically-engaged end-users. These transformations are usually 
performed with conventional programming languages which are 
powerful but indirect: the user writes symbolic code (e.g. JavaScript) 
to manipulate data rather than directly act on it. This can present 
learning barriers for end-user programmers [31, 42], and limit the 
directness and visibility of programming [2, 43, 45]. 

In contrast to coding, editors for everyday computer activities 
like creating slide shows, drawing, and video editing feel control-
lable and live because they operate by principles of direct manipu-
lation (DM): users transform data through operations that produce 
“immediately visible” effects on a “continuous representation of the 
object of interest” [50]. These editors are versatile, suited to a broad 
range of tasks. For example, a vector graphics editor can be used to 
directly annotate a chart, or to lay out furniture on a floor plan. 

How might we design a versatile, direct-manipulation editor 
for programmatically transforming JSON? A long line of work in 
programming by demonstration (PbD) systems has sought to bring 
benefits of DM to programming. PbD systems enable users to spec-
ify programs by step-by-step demonstrations, and cover domains 
such as web scraping [11], text [40], data visualization [48], tabular 
data [29], and interactive systems [10]. However, these systems of-
ten (1) undermine directness through automatic inference, making 
the effects of actions unpredictable and error recovery difficult [33], 
and (2) are not versatile, as they are designed to streamline specific 
workflows (e.g. web-scraping [11]) rather than operate on a broader 
medium (e.g. JSON) that can support multiple workflows. 

To overcome these limitations, we built Sculpin, a direct-mani-
pulation programming system for transforming JSON data. Sculpin 
follows three design commitments to achieve directness and versa-
tility. To ensure directness, Sculpin’s operations are (1) small and 
precise, avoiding leaps of inference. To ensure versatility, Sculpin’s 

operations are (2) general-purpose and reappropriable and (3) de-
fined directly on their underlying medium (JSON), rather than on 
an intermediate or parallel representation. 

In Sculpin, users transforms JSON data step by step, recording 
a program in the process. The user precisely directs their actions 
by sculpting a selection on top of the data through small steps 
like generalization and hierarchical navigation. The JSON medium 
they work on is also extended to include interface elements like 
form inputs and buttons, so Sculpin can be used to continuously 
transform data into interfaces, using the same mechanisms that are 
used to transform data into new data (Figure 1). 

We evaluate Sculpin through three demonstrations: transform-
ing JSON from one format into another, building an API-backed 
search interface, and crafting a document-backed TODO list appli-
cation. These demonstrations show that Sculpin can be used for 
realistic programming tasks through continuous and familiar direct-
manipulation interactions. To more systematically evaluate Sculpin, 
we apply a heuristic analysis using the "Technical Dimensions of 
Programming Systems" (TDPS) taxonomy introduced by Jakubovic 
et al. [28], which situates Sculpin in a space of related program-
ming systems. Among other findings, it highlights Sculpin’s tight 
feedback loops, but points to unresolved challenges around editing 
programs after writing them and specifying higher-level, semantic 
steps. We close by speculating how our design commitments might 
guide the creation of novel programming systems on diverse media 
which share Sculpin’s expressivity and directness. 

In summary, this paper contributes: 
(1) Sculpin, a programming interface enabling direct-manipula-

tion transformation of a hybrid medium of JSON data and 
interface elements. 

(2) Evaluations of Sculpin through demonstrations and a heuris-
tic analysis. 

2 Related Work 

2.1 Programming by Demonstration 
A rich line of work in programming by demonstration (PbD) attempts 
to make programming possible for end-users by letting them demon-
strate an action and generating a reusable program from the demon-
stration. PbD systems have been explored for tasks like scraping 
web pages [11], wrangling data [4, 29], creating charts [37, 46, 48] 
and editing text [40]. Sculpin draws on many mechanisms that are 
well-established in the PbD literature. For example, Sculpin displays 
a history of user actions as a visible timeline (as in Chimera [32], 
Smart Bookmarks [26], Drawing Dynamic Visualizations [54], and 
commercial CAD software like Autodesk Fusion 360 [3]), and user 
intent is specified by directing selections (see §2.3). Below, we de-
scribe three ways Sculpin positions itself among PbD systems to 
achieve directness and versatility. 

Small, precise steps. Direct manipulation (DM) is an interaction 
paradigm which maximizes directness – the “qualitative feeling that 
one is directly engaged with control of the objects – not with the 
programs, not with the computer, but with the semantic objects of 
our goals and intentions” [27]. In a DM interface, changes to objects 
are incremental and immediately visible [50]. In contrast, many PbD 
systems undermine directness by performing large-step inference 
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of user intent from under-specified or implicit user actions using 
heuristic or machine-learning techniques. Some of these systems, 
like Eager [13], Metamouse [38], and Chimera [32], let users work 
with conventional interfaces and then infer patterns from their 
actions. Other systems, like FlashFill [20] and Wrex [15], are better 
described as programming by example (PbE) as they synthesize code 
entirely from input-output examples. In all these cases, inference 
complicates a feeling of direct control over media, because a user’s 
actions no longer translate into predictable effects. When too much 
control is handed off to an inference-driven system, the user takes 
on the role of a manager who acts out steps for an employee to 
follow and then monitors the employee’s work to ensure it matches 
their intent. The resulting distance between the user, the system’s 
action, and the medium undermines the "confidence and mastery" 
that direct manipulation ought to produce [50].1 

Instead of using inference, some PbD systems present novel 
palettes of interactions with which users can unambiguously ex-
press generalizable intent. This includes the earliest PbD system, 
Pygmalion [51], and more recent work like Gneiss [8] and Vic-
tor’s "Drawing Dynamic Visualizations" demo [54]. Sculpin follows 
this approach in order to ensure users stay in control, introducing 
mechanisms like "sculptable selections" in lieu of inference. 

General-purpose steps. PbD systems are often task specific. For 
example, there is a rich line of work in web-scraping with direct 
manipulation [11], and a separate line of work exploring how web 
pages can be modified by direct manipulation [36]. Sculpin explores 
the possibility of designing tools fit for a broader range of tasks 
by centering actions on a medium – in Sculpin’s case, JSON. A 
user of Sculpin can perform a broad range of tasks with the same 
underlying mechanisms. This unity provides downstream benefits 
like unexpected re-appropriations and skill transfer between tasks. 

As an example of the possibilities that open up by working with 
general-purpose operations in prior work, we can compare DM 
chart authoring systems (Lyra [48], Charticulator [46] and Data Il-
lustrator [37]) to Victor’s "Drawing Dynamic Visualizations" demo 
(DDV) [54]. Although Victor frames DDV as a tool for making data 
visualizations, it actually provides general-purpose operations on 
vector graphics (shapes) rather than higher-level operations specific 
to the domain of data visualizations (marks, encodings, axes). As a 
result, it can not only be used to plot datasets, but also to graph-
ically define simulations of dynamical systems; he demonstrates 
an "implementation of the spring equation, specified entirely ge-
ometrically" [54]. By providing general-purpose operations, DDV 
explores a broader space of possibilities, though it may take more 
steps than more specialized tools to accomplish the same goals. 

Working directly on a medium. Inspired by Bostock et al.’s [6] 
principle of representational transparency, we seek to provide direct 
access to our underlying medium (JSON) rather than replacing it 
with intermediate representations. Representational transparency 
makes it easier to maintain full expressivity within a medium. Re-
placing a medium with a new representation produces opportu-
nities for elements to be lost. For instance, Gneiss [9, 10] enables 

1The impact of inference on directness exists on a spectrum, and can be relieved 
through strategies like keeping inference to smaller steps and establishing shared 
representations between users and inference engines [23]. 

processing JSON data by re-representing the data into a hierar-
chical spreadsheet structure. But this intermediate representation 
leads to limitations: Gneiss cannot process JSON with certain struc-
tures, like record-sets stored in keyed objects rather than arrays, 
and it cannot produce precisely-structured JSON for downstream 
processes. Representational transparency also provides benefits for 
accessibility: users can leverage their familiarity with the original 
representation while working with the system. 

2.2 JSON 
Sculpin works on the medium of JSON data. We are interested 
in JSON partially because of its ecological importance. JSON has 
emerged as a lingua franca in the Web era. JSON is found in API 
requests and responses, as a storage format in "NoSQL" databases, 
and as a format for domain-specific languages [5, 39]. Furthermore, 
runtime data in scripting languages like JavaScript and Python 
often takes the form of data very much like JSON: assemblies of 
arrays and records containing primitives like strings and numbers. 
Because of the frequency and breadth of its use, we believe JSON 
(or comparable "semi-structured data" like XML [1]) is a critical 
target for end-user programming tools. 

The most common way to create programs that work on JSON 
is with traditional programming languages like JavaScript and 
Python. Domain-specific languages are also available for working 
on JSON [7, 14, 18]. We share some concepts with these languages, 
such as selecting paths with wildcards and parallel operations on 
sets, though we operationalize them as DM features rather than as 
language features. Some systems explore DM programming atop 
JSON or similar hierarchical formats. The one most similar to our ap-
proach is Gneiss [9, 10], which we discussed in §2.1. SIEUFERD [4] 
applies a similar "nested relational model" approach [34], and works 
on relational data rather than JSON itself. 

2.3 Selections and Selectors 
Selections are a universal part of direct manipulation systems. The 
basic concept of selection has been extended and enriched over 
time, to include multiple simultaneously editable selections [41], 
generalization of selections according to specific attributes [24, 
56], and the ability to navigate selections through structures [55]. 
Sculpin’s sculptable selections make use of all these developments. 

Query languages like JSONPath [19, 22], XPath [47], and CSS 
selectors [16] allow sets of nodes in a tree to be selected using paths 
containing wildcards. Sculpin uses a similar approach, though we 
extend it to support branching patterns and storing the results of 
"filter" actions. We also use the internal structure of these patterns 
to drive the behavior of structural actions (see §4.5.1). 

3 Sculpin in Action 
We introduce Sculpin with a scenario: Alex is visiting Los Angeles 
during an art festival. The online website offers a list interface to 
search for exhibitions, but not a map, which is what Alex needs 
to find interesting exhibitions as they travel the area. Alex finds 
a JSON API response backing the website which has data for all 
exhibitions. Alex knows that if they could transform this into a 
GeoJSON format, then they can easily feed it into an online tool. 
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Figure 2: Sculpin can be used to reshape data: Alex turns JSON from a festival website into GeoJSON that can generate a map. 
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Let’s follow Alex as they use Sculpin to turn their data into the 
desired GeoJSON format:2 

• Alex’s data starts as a list of exhibitions, where each exhibi-
tion contains an array of lat-lng objects. Alex’s first goal is to 
flatten this data into a single list of lat-lngs with exhibition 
titles. This can be done in two stages: first copy the titles 
down into the lat-lng objects, and then bring these objects 
up to the top level. Alex selects the first exhibition’s title 
( 1 ), and, in response, Sculpin surfaces a command palette 
menu for possible next operations. Alex uses the palette to 
generalize their selection across to the remaining titles ( 2 

). Upon generalizing, Sculpin offers Alex an opportunity to 
alter their generalization direction (indicated with a light 
box). In this case, the default generalization to all titles is 
already what Alex wants. 

• With the titles selected, Alex drags them into the first loca-
tion ( 3 ). Sculpin then gives Alex an opportunity to gener-
alize the drop target to all entries in the locations arrays, 
rather than just the first – which they take ( 4 ). 

• Alex would like to extract the location objects as a flat list. 
They shift the selection to the parent objects ( 5 ) and then 
drag those objects out onto the root node ( 6 ). 

• Finally, Alex selects each location ( 7 ) and uses the formula 
input entry to transform the object into GeoJSON with a 
small JavaScript template ( 8 ). Alex could have done this 
transformation in smaller direct-manipulation steps, but 
with the data already in the right place, they finds it eas-
ier to type out a formula. With data as GeoJSON, Alex then 
copies it into an online tool to view a map of the art festivals. 

At each step, the JSON data was visible, and manipulations were 
directly and unambiguously performed on the concrete values. Alex 
was able to draw on their existing knowledge of interaction idioms 
like mouse-based direct manipulation and keyboard shortcuts. As 
Alex interacted with the data, each step was recorded into a timeline 
similar to the one in Figure 3 A . If new exhibitions are posted, 
they can re-run this timeline with the new data to create a new 
GeoJSON. Sculpin is also capable of creating styled interfaces from 
JSON. Figure 3 B shows an alternate workflow where Alex groups 
festival exhibitions by theme and then displays each exhibition’s 
image in place. This example also uses Sculpin’s scratch space 
feature, which allows extra data to be attached to any object. 

4 Sculpin 
Below, we describe Sculpin’s interface and implementation in full. 

4.1 Interface 
Figure 3 illustrates an annotated overview of Sculpin’s interface, 
which consists of: 

( A ) Timeline: User actions are recorded into a linear timeline, 
which represents the program the user is building. A user 
can survey past JSON and selection states by hovering over 
steps in the timeline. 

2Some interface elements and data properties have been simplified for brevity. 

Figure 3: An alternative workflow where images of exhibi-
tions are shown within Sculpin. The exhibitions are grouped 
by theme, which has added a scratch space containing the 
theme under each group. 

( B ) Workspace: The workspace provides a single, focal view of 
Sculpin’s medium (JSON data with extensions, see below) 
and a selection overlay on it. 

( C ) Description: A description of the current selection is shown 
at the top as feedback for the action being performed. 

( D ) Command palette: Next to the selection overlay, Sculpin 
shows a context menu containing a list of available actions 
on the current selection, and a formula text entry which al-
lows input of JavaScript code for an "Apply formula" action. 

( E ) Run mode toggle: When Sculpin is used to define an interface 
(as shown in §5.1 and §5.2), this toggle allows the user to 
enter a mode where this interface is available for interaction 
and program-editing features are disabled. 

4.2 Medium 
Sculpin’s medium is JSON, extended in two ways. First, we add the 
ability to attach styles and user-interface elements to JSON nodes. 
With this extension, Sculpin can transform JSON not only into new 
JSON, but also into formatted displays and even interactive appli-
cations. Second, we provide scratch space: the ability to attach keys 
and values to not just objects but also arrays and primitives. When 
Sculpin is used to produce JSON output, the scratch space will not 
be included; it is solely for intermediate computations. These two 
extensions fit inside of JSON structures as lightweight augmenta-
tions, rather than replacing JSON with higher-level representations 
– preserving our commitment to representational transparency. 
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4.3 Selection 
Sculpin uses a subject-verb metaphor for interaction. To specify 
the subject of their actions, the user sculpts a selection. When an 
action is performed, it acts on the selected part of the medium. 

Selections in Sculpin support multiple selection, building off the 
multiple-selection mechanisms that have long been available in 
text editors [41]. When an action is applied to a selection with 
multiple items, it applies to the items in parallel. This obviates 
the need for loops in many cases, keeping the timeline linear and 
spreading computation over space instead of time. To maintain full 
expressivity, it is important that larger structural actions that draw 
upon many selected items at once (like "Group by") be similarly 
"loopable" from a single selection. To make this possible in Sculpin, 
we represent selections with a tree of patterns we call a structured 
selection (§4.5.1). 

Users may sometimes want to select gaps – like the space be-
tween two array elements – where a part could be inserted by a 
future action. Here, we use the concept of a "seam": a selectable 
gap between parts. (In Figure 2 3 , Alex drags titles onto a seam to 
insert them into objects.) 

4.4 Actions 
Sculpin provides two types of actions. A user selects a subject—their 
direct object of interest—by sculpting a selection using selection 
actions, and then operates on the parts underneath the selection 
with medium actions. 

Selection actions. Selections are a familiar pattern from direct 
manipulation interfaces. In Sculpin, users also edit their selections 
in small steps, which lets them specify their intent unambiguously 
(without inference) and directly (on a concrete medium, not a sym-
bolic representation thereof). Four primary types of selection ac-
tions work together to fulfill this role. Concrete selection selects a 
part of the JSON tree or a seam (space between values) directly, as in 
a conventional editor. Typically, this is followed by generalization: 
expanding from the particular selection to some broader category 
by abstracting over some part of it. (In Figure 2, we show these 
in steps 1 - 2 .) It is often later important to navigate a selection 
through the medium. (Step 5 is an example of this, moving from 
the location the title was dropped at to its parent.) Finally, filtering 
means narrowing a selection to a subset based on the data under-
neath the items. (This is shown in Figure 1 1 .) Figure 4 A provides 
a visual summary of selection actions and gestures to invoke them. 

Medium actions. With a selection in hand, a user can specify edits 
to the medium using either a per-item action, where each selected 
item changes in the same way and does not alter surrounding 
structure, or a structural action, where larger changes to the medium 
occur. Figure 4 B illustrates medium actions and the gestures to 
invoke them. Selection is maintained after medium actions, allowing 
actions to be chained. 

4.5 Implementation 
Sculpin is a web application, developed with React in TypeScript. 
It can be run as a standalone tool, or embedded into other web 
applications with an iframe. Demos of Sculpin are available online.3 

3http://sculpin-uist25.github.io/paper.html 

Programs created with Sculpin are represented in a JSON format 
which stores the steps recorded in the timeline. For example, the 
program shown in Figure 3 is represented as: 
1 [ 
2 { type: "MoveSelectionTo", path: [0, "image"] }, 
3 { type: "GeneralizeSelection", pattern: [0] }, 
4 { type: "ShowAs", show_as: "ImageFromURL" }, 
5 { type: "MoveSelectionTo", path: [0, "themes"] }, 
6 { type: "GroupBy" }, 
7 ] 

Sculpin interprets this program format directly. This interpreter 
logic could be split off for "headless" use of Sculpin programs. 

4.5.1 Structured Selections. Sculpin uses a query-language-like 
structure called structured selections to represent selections. Our 
motivating example in §3 shows this structure at the top of each 
screenshot, like / * / title in Figure 2 2 . This is a patterned path 
consisting of a wildcard * , meaning "take every key", followed 
by a concrete key title . Sculpin resolves each such path into a 
concrete set of nodes shown highlighted in the data. Sculpin also 
uses this structure to guide the behavior of structural operations. 
For instance, steps Figure 2 3 - 4 construct a drag from / * / title 

to / * / locations / * / title . Because these share a leading / * , the 
drag becomes a loop of drags for each /x. The target contains an 
additional wildcard, so a nested loop is added: each /x/ title is 
dragged to each /x/ locations /y/ title . This automatic looping 
behavior extends across the actions Sculpin supports and is essential 
to Sculpin’s expressivity. 

As described so far, structured selections match a subset of the 
JSONPath query language [19, 22], with novel semantics for actions 
like drag-and-drop. Sculpin adds two features: branching selections, 
which make patterned paths into patterned trees, and recording 
data-specific "exclusions" onto wildcards to support filtering. These 
features were not used in Figure 2, but are used in the following 
demos (§5). Appendix A further describes structured selections. 

Note that selections in Sculpin are defined as patterns starting 
from the root of the JSON tree, proceeding a fixed number of steps. 
While they can refer to data at any fixed depth in the tree, they 
cannot refer to data at an unknown depth in the tree. This becomes 
a limitation if a user wishes to refer to arbitrarily-nested recursive 
structures, as might occur in ASTs of program code. 

5 Further Demonstrations 
We first demonstrated Sculpin in the map-making example in Fig-
ure 2. To further evaluate its expressive range, we now present two 
more demonstrations of it in use. To cover more ground, we will 
go into less step-by-step detail than we did in Figure 2. 

5.1 Lightweight App: Image Quilt 
With Sculpin, users can transform JSON not just into different JSON, 
but into user-facing interfaces. To do so, they use actions that apply 
styles to nodes or turn them into interface elements (e.g. turning 
booleans into checkboxes). The resulting interface, available in 
Sculpin’s run mode, can be used to edit the original data: operations 
on output elements bidirectionally change the input. 

http://sculpin-uist25.github.io/paper.html


Sculpin: Direct-Manipulation Transformation of JSON UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea 

Figure 4: A summary of selection actions ( A ) and medium actions ( B ) in Sculpin. 
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Figure 5: Sculpin can make lightweight interfaces. Above, we 
create an interactive gallery application that shows artwork 
from the Art Institute of Chicago [53] matching a provided 
query. (Recreation of example from Horowitz and Heer [25].) 

In Figure 5, we create an interactive image gallery of artworks 
using the Art Institute of Chicago API [53], demonstrating how a 
lightweight interface can be built up entirely within Sculpin. 

The example begins by duplicating the query text ( 1 ) to keep 
it available for editing later. Once the text is adapted into a URL, 
this URL can be fetched with an action that replaces it with the 
HTTP response ( 2 ). As the response is sculpted, parts of it can be 
restyled ( 4 , 5 ) using natural extensions of data-editing actions in 
Sculpin. Once the interface is constructed, we can interact with it 
by entering run mode where input values that are transformed into 
interface elements (without modification) can be edited. As such, 
the query text is editable (the system has tracked that it originated 
in a piece of the input). Changing the text updates the input and 
reruns the program ( 6 ), producing a reactive interface. 

Note that even after restyling, Sculpin maintains a close-to-data, 
‘wires sticking out’ aesthetic. For example, object keys are shown 
even in the final interface. While a version of Sculpin could provide 
tight control over styling, we pursue this aesthetic to make handles 
on data visible for future modification, as we discuss in §8.2. 

5.2 Document-Backed App: TODO List 
Figure 6 illustrates how Sculpin can be used to make a TODO-list 
app atop a JSON document. We take as our premise a team building 
a shared TODO list app, where each item is assigned to a member. 

This demonstration exercises a new feature of Sculpin: program-
ming button presses. To add functionality on the Add todo button, 
we enter a mode to record a click action on the button ( 5 , 6 ). In 
this mode, our actions are recorded onto a separate timeline which 
will act on the input data whenever the button is clicked. The same 
data shaping functionalities of Sculpin are available for this task. 
We drag the text into the list items and use a formula to reshape it 
into a TODO item format ( 7 , 8 ). Later, in run mode, pressing the 
button adds a new item into the list ( 10 ). 

For this application to be useful, it must be embedded in an in-
frastructure that persists JSON documents. For this purpose, we 
used Patchwork [35], a platform for shareable data and tools com-
parable to Webstrates [30]. We elaborate on how open platforms 
like these could open up more uses for Sculpin in §8.2. 

6 Heuristic Evaluation 
While our demonstrations of Sculpin show its range and directness, 
more systematic evaluation is necessary to characterize its limits. 
Towards that end, this section analyzes Sculpin according to the 
"Technical Dimensions of Programming Systems" (TDPS) taxonomy 
introduced by Jakubovic et al. [28]. The first two authors indepen-
dently analyzed Sculpin dimension-by-dimension. Our discussion 
here synthesizes their results. 

Feedback loops. This dimension refers to how systems bridge the 
gulfs of evaluation and execution [27]. Several aspects of Sculpin 
help bridge the gulf of evaluation: small-step actions make feedback 
loops short, and local actions focus attention on what must be re-
viewed after an action. Sculpin’s formula editor could be improved: 
it provides no feedback until a formula is fully entered and applied. 
Sculpin’s approach to bridging the gulf of execution is to show all 
available data in a single view so users can see precisely what they 
have to work with. Sculpin also shows all available actions in the 



Sculpin: Direct-Manipulation Transformation of JSON UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea 

Figure 6: A TODO list being built with Sculpin. Steps 1 – 5 restyle the list into an interface that groups tasks by assignee and 
dims completed tasks. Steps 6 – 9 record an action for the "Add todo" button: adding a new task and clearing the text input. 
(Step 4 uses a ‘dim’ restyle action that lowers opacity of selected elements.) 
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command palette. This provides guidance roughly comparable to a 
method auto-complete feature in a conventional coding environ-
ment. We also note that Sculpin’s emphasis on small-step actions 
may present challenges for bridging the gulf of execution. It may 
be difficult for users to bridge the "semantic distance" between their 
larger goals and the small steps Sculpin provides [27]. 

Modes of interaction. Sculpin was deliberately designed to min-
imize the use of modes. For instance, drag-and-drop interactions 
with generalized targets were originally specified by sculpting the 
target of the drag-and-drop in a mode. We abandoned this approach 
in favor of the current approach in which drag-and-drop occurs im-
mediately (without generalization) and the target can then be gener-
alized modelessly. Sculpin does have separate modes for "recording" 
and "running". While this distinction serves a clear function (should 
edits affect the program or the input data?), blurring these lines 
could open up new possibilities. 

Conceptual integrity vs openness. "Conceptual integrity" means 
employing "unified concepts that may compose orthogonally to gen-
erate diversity" [28]. Sculpin’s design is built around several con-
ceptual unifications: Actions are used to modify both media and se-
lections. Medium actions allow both changes to data and restylings. 
Action timelines are used to make application views out of data 
and to define the behavior of button presses. 

Factoring of complexity. "Factoring of complexity" asks what 
means a programming system provides for hiding details inside 
reusable components. In practical use of Sculpin, users will likely 
want to define, use, and share higher-level operations – a feature 
Sculpin currently lacks. We imagine higher-level operations like 
this could be defined inside our system as timelines to be called 
from timelines, like functions in traditional programming languages. 
Questions remain about the detailed design of such a feature, such 
as how multiple "arguments" could be provided to such an oper-
ation, and how a continuous, direct-manipulation feeling can be 
maintained as operations grow in size. 

Level of automation. While many PbD systems are based around 
inferring intent from user actions, Sculpin is designed to let users 
express intent unambiguously (§2.1). The only place Sculpin devi-
ates from this discipline is in its "Generalize" action, which uses 
heuristics to pick a default axis for generalization. This feels innocu-
ous to us, as the system simultaneously reveals alternative axes and 
makes it easy for the user to switch – the heuristic inference is not 
a bottleneck, but a transparent, optional shortcut. 

Error response. A Sculpin program might run into errors in two 
different situations: (1) A user records an action that produces 
an error: Because the timeline in Sculpin can be freely navigated, 
the user can undo the action and try again. (2) New input comes 
into a program and causes an error in an intermediate step: As we 
discuss further in §7, Sculpin does not yet have the means to modify 
intermediate steps in programs. 

Learnability. The learnability of Sculpin is untested. That said, 
we have reasons to think it may fare well: Sculpin builds on familiar 
direct-manipulation techniques like drag-and-drop. Also, Sculpin 
provides fast feedback for user actions, so users can quickly learn 
the consequences of their actions. The "conceptual integrity" of 

Sculpin (described above) will aid learners by "collapsing stacks", 
using the same concepts and interactions to craft user interfaces 
as it uses to transform data between formats. On the other hand, 
Sculpin’s generality may make it harder for learners to adapt it to 
their needs, compared to a more task-specific system [42]. 

7 Limitations 
A complete version of Sculpin would provide additional actions 
(e.g. joins4). However, certain questions remain unresolved. 

How can programs be edited in the middle? A significant limita-
tion in Sculpin is the inability to edit intermediate parts of a program. 
A Sculpin program can only be edited by appending actions to the 
end of the timeline or by undoing actions. Many situations call 
for adjusting actions partway through a program (e.g. adapting a 
program to respond to an error triggered by new data). There are 
easy ways to begin to remedy this, like adding a movable "cursor" 
in the timeline to allow actions to be inserted at any point, but this 
raises new questions. For instance, what happens if a modification 
breaks the part of a program after the modification?5 

How might users better work with unpredictable data? Like most 
PbD systems, Sculpin works best in situations with predictable in-
puts. A Sculpin user builds a program atop a representative input, 
which guides the actions they apply. If new inputs arrive with 
different structures, the program is unlikely to work correctly. Es-
tablished PbD techniques, like examining multiple inputs in parallel, 
might ameliorate this problem [44]. 

How can loops and control flow be specified? Sculpin’s multiple-
selection system makes it easy to apply an action across items in 
collections, equivalent to a functional "map" operation. However, 
Sculpin does not have a imperative-style looping construct – its 
timeline is always linear. There are certainly contexts in which 
"map" is not enough; say, implementing a custom aggregation rou-
tine that must loop over a list while maintaining state. This could 
be addressed by adding loops to the timeline [54] or using recursive 
calls [17], but these both complicate Sculpin’s linear timeline, sac-
rificing some measure of directness. Fortunately, general-purpose 
loops may not be as important to end-user programmers as higher-
level operations like "map", which Sculpin supports well through 
multiple selections: “End-user programmers most often use sys-
tems where they do not write loops. Instead, they use vector-based 
operations — doing something to a whole dataset at once” [21]. 

How might Sculpin be used to build varied interfaces? When trans-
forming JSON into a user-facing interface, a Sculpin user can only 
express a limited range of interfaces – those consisting of editable 
primitive values and script-invoking buttons. Sculpin does not cur-
rently support common interface patterns like: (1) direct manipula-
tions that change the structure of collections, like dragging cards 
on a kanban board, (2) mouse events like hovering, (3) controllable 
reactivity, such as debouncing, throttling, and memoization. 

4Gneiss [10] and SIEUFERD [4] both show how the results of joins can be represented 
as nested data which is easy to represent in JSON. 
5Bakke and Karger [4] characterize difficulty with edits as a shared limitation of what 
they call "algebraic" interfaces, a category to which Sculpin belongs. 
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Figure 7: An imagined system modeled after Sculpin but applied to web pages rather than JSON, sorting links on a news 
aggregator ( 1 – 2 ) and pulling in comments from linked pages ( 3 – 6 ). 

How might Sculpin be more usable? As a prototype, there are 
numerous ways Sculpin’s usability could be improved. Promising 
directions include: (1) Feedforward. Previewing the effects of ac-
tions (like drags) would make it easier for users to fluidly explore 
and perform actions. (2) Working with selections symbolically. A 
Sculpin user usually interacts with a selection as a concrete over-
lay on JSON. However, in some cases it may be easier to edit a 
selection’s symbolic representation as a tree of patterns. (3) Anima-
tions. Sculpin aspires to create the feeling of a material changing 
continuously. Animations (e.g. of drag operations) could support 
this. (4) Controlling focus. When data becomes complex, it becomes 
essential to find ways to focus the view on parts of interest. (5) 
Organizing actions. Actions in Sculpin are accessed through a long 
list. Different means of accessing and triggering actions (such as 
toolbars) might make them more organized and discoverable. 

8 Discussion & Future Work 

8.1 Media beyond JSON 
We believe the approach Sculpin takes to scripting transformations 
of JSON might be applicable to media beyond JSON. As an example, 

Figure 7 shows a sketch of how Sculpin’s mechanisms (like sculpt-
able, structured selections and drag-and-drop) could be repurposed 
to a medium consisting of web pages connected by links. While 
this figure shows a user customizing an existing web page to add 
features, the system we imagine here would not be specific to this 
task. Like Sculpin, it would provide medium-wide general-purpose 
operations, and could also support other tasks on web pages, like 
building scripts for web scraping (as in Rousillon [11]). 

Sculpin’s approach generalizes smoothly to new media because it 
preserves its subject medium. Many PbD systems instead substitute 
newly invented representations for the original representations 
of a medium’s conventional editor, mixing programmatic struc-
tures into their media. As an example, Gneiss [9, 10] persistently 
stores user actions like sorts and groupings inside its spreadsheet 
representation. Approaches like these are medium-specific, and 
challenging to generalize to new media. In contrast, Sculpin pro-
vides programmatic power through overlays (like the selection & 
timeline) that are generic across media. For this reason, we believe 
that a Sculpin-like system may facilitate direct-manipulation pro-
gramming on diverse media beyond JSON, from text documents to 
vector graphics. 
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8.2 Blending Data and Interfaces 
Sculpin blends together data and interfaces into a single medium.6 

This is useful when building a traditional interface, as data struc-
tures act as "scaffolding" for parts of the interface that haven’t been 
built yet. It also opens up further applications: 

(1) Sculpin could incrementally style output data displayed in 
a live programming system like a computational notebook 
(e.g. certain values become headings, others become rows). 

(2) Hybrids between between data and interface can act as 
purpose-specific tools. A colleague using Patchwork [35] 
wanted to retrieve text from a comment that had been deleted 
off a document. Using an embedding of Sculpin within Patch-
work, we were able to quickly craft an alternative interface 
that showed all comments (including deleted ones) in a table, 
making it easy to find the desired comment. In this context, 
tools made with Sculpin can route around limitations of a 
primary editor – a hint of "malleable software" [35, 52]. 

(3) Interfaces built with Sculpin might maintain and expose 
enough structure that they could be interacted with pro-
grammatically. For instance, a user using the "TODO" app 
(§5.2) might use Sculpin’s generalization features to batch-
select todos associated with a given user and check them all 
in a single action. They would do this not with a feature im-
plemented by the interface author, but using a general, open-
ended feature of Sculpin. This relies on our "wires-sticking-
out" approach to interfaces: even when data is shaped into 
an interface, the structure of the data is still visible to the 
user and accessible to programmatic action. 

8.3 Bidirectional programming 
Bidirectional programming is a form of PbD in which demonstra-
tions perform edits on ordinary, human-editable code [12]. This 
approach has a number of possible benefits – it offers a clear rep-
resentation of the underlying program and affords an alternative 
route for editing it. This ameliorates a number of classic issues with 
PbD articulated by Lau [33]. Sculpin’s current implementation is 
subject to these classic issues. Although Sculpin exposes a represen-
tation of the program in the form of a timeline, it is not designed as 
an independently legible artifact. Furthermore, as discussed in §7, 
this timeline representation is not directly editable. A bidirectional 
approach might resolve these issues, though it may be complex to 
implement, as Sculpin’s construction and use of selections does not 
map line-by-line to idiomatic code in a language like Python. 

9 Conclusion 
This work contributes Sculpin, a programming-by-demonstration 
system for transforming JSON data into new forms and interactive 
applications. Sculpin aims for directness and versatility by offering 
operations that: are small & precise, are general-purpose, and are 
defined directly on the medium. To achieve these goals, Sculpin uses a 
novel mechanism called sculptable selections where a user specifies 
the target of their action in small, deliberate steps. Sculpin also 
extends JSON to a hybrid medium with interface elements, so that 
its mechanisms can be used to incrementally transform data into 

6We were inspired by Schmitz’s demonstration [49] of gradually building up an inter-
face from a JSON skeleton. 

interfaces. Our examples of Sculpin in use and a heuristic analysis 
demonstrate Sculpin’s directness and versatility, while revealing the 
need for new techniques to make Sculpin programs fluidly editable. 
The principles that underlay Sculpin’s design seem well-suited to 
generalization to new media beyond JSON, which may help bring 
direct-manipulation programming to diverse end-user contexts. 
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A Selection Mechanism 
This appendix provides more details on Sculpin’s selection mecha-
nism, previously introduced in §4.5.1 

Extensions. Sculpin makes two extensions to simple JSONPath-
like paths: First, rather than proceeding linearly down a path, struc-
tured selections can branch at any point, forming a tree of patterns. 
For instance, a structured selection on [{a: 1, b: 2}] might start 
with a wildcard / * , followed by a branch to / a in parallel with a 

branch to / b . We notate this selection as . 
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Figure 8: Using Sculpin to make a list of friends with cats, illustrating how structured selections guide the action. 

Figure 9: Drag-and-drop actions in Sculpin can A move values, B gather them together, or C spread them apart, depending on 
the structure of the source and target selections. 

Second, wildcard steps can mark some paths in the data as "ex-
cluded", in order to represent the results of a data-based filter oper-
ation.7 We summarize exclusions in our notation with a subscript 
marking how many paths have been excluded: / * / a

-5 
. These two 

extensions of JSONPath can interact: if a selection contains multi-
ple paths branching after a wildcard, exclusions recorded on that 
wildcard will apply to all the branches. 

Walkthrough. To further describe how structured selections en-
able structural navigation and sculpting operations, Figure 8 shows 
how a user might use Sculpin to make a list of friends with cats: 
( 1 ) They select a node in the data, which sets the selection to 

/ friends / 1 / hasCat , a path of definite steps. 
( 2 ) Next, the user hits Ctrl-A to "Generalize" the selection. This 

action converts a single definite step in the pattern-path 
into a wildcard step. There are two possible generalizations: 
/ friends / * / hasCat and / friends / 1 / * . (A third option, 
/ * / 1 / hasCat would be possible, but this adds no additional 
nodes to the selection, so Sculpin does not surface it.) Sculpin 
observes that / friends / * / hasCat adds more nodes to the 
selection than / friends / 1 / * , so it picks this generalization 
by default. The user can switch which generalization they 
want by clicking one of the boxes that appear around nodes 
on other axes of generalization. 

7As an edge case, filtering a value that is not under a wildcard results in a exclusion 
mark on the root node. 

( 3 ) The user hits Ctrl-F to "Filter" the selection. This filters 
out false values, resulting in exclusions on the wildcard: 
/ friends / * / hasCat 

-1 
. 

( 4 ) The user wants to access the names of these cat-having 
friends, so, they click one of these names. This invokes 
Sculpin’s "parallel navigation" logic. The clicked node is at 
the path / friends / 2 / name . When moving to this from the 
existing selection / friends / * / hasCat 

-1 
, Sculpin re-uses as 

much of the existing selection as possible, starting from the 
root. This results in the selection / friends / * / name 

-1 
, main-

taining the wildcard filter from before. 
( 5 ) Finally, the user drags the selections out to a seam at the 

end of the top-level object after "friends". If the drag target 
shared structure with the source, it would produce a loop of 
drags, but here that doesn’t happen: the target is interpreted 
as a single node. The selected items are gathered together 
into an array and dropped into the target. 

Drag-and-drop. The most versatile action in Sculpin is drag-and-
drop. Figure 9 shows three different behaviors that can be created 
with drag-and-drop, depending on the structure of the source and 
target. In A , the source and target share a wildcard prefix, but 
without any wildcards below this prefix. This results in a loop of 
one-to-one drags. In B , the source has a wildcard the target doesn’t. 
This results in a many-to-one drag, "extracting" content from the 
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source structure. In C , the target has a wildcard the source doesn’t. 
This results in a one-to-many drag. 

The behavior of drag-and-drop extends further than these ba-
sic examples. For instance, steps 3 - 4 of Figure 2 construct a 
drag from / * / title to / * / locations / * / before 0 . Since the 
two paths share a leading wildcard step, a loop is created: for 
each child node in / * , a drag is performed from its / title to 
its / locations / * / before 0 , which works as a one-to-many drag 
like Figure 9 C . 

Designing selections and actions in Sculpin, we have been careful 
to make sure that any operation can be looped in any way by 
building the right kind of selection. For instance, the "Sort by" action 
receives a selection marking keys by which to sort elements of an 
array. If the keys are placed under the items of a single array, "Sort 
by" will sort that single array, but if they are under multiple arrays, 
"Sort by" will sort all these arrays simultaneously. If structural 
actions did not allow loops like this, the result ing system would 
lack expressivity. 


	Abstract
	1 Introduction
	2 Related Work
	2.1 Programming by Demonstration
	2.2 JSON
	2.3 Selections and Selectors

	3 Sculpin in Action
	4 Sculpin
	4.1 Interface
	4.2 Medium
	4.3 Selection
	4.4 Actions
	4.5 Implementation

	5 Further Demonstrations
	5.1 Lightweight App: Image Quilt
	5.2 Document-Backed App: TODO List

	6 Heuristic Evaluation
	7 Limitations
	8 Discussion & Future Work
	8.1 Media beyond JSON
	8.2 Blending Data and Interfaces
	8.3 Bidirectional programming

	9 Conclusion
	Acknowledgments
	References
	A Selection Mechanism



