
Sculpin: Direct-Manipulation Transformation of JSON
Joshua Horowitz∗

University of Washington
Seattle, Washington, USA

joho@uw.edu

Devamardeep Hayatpur∗
University of California, San Diego

La Jolla, California, USA
dshayatpur@ucsd.edu

Haijun Xia
University of California, San Diego

La Jolla, California, USA
haijunxia@ucsd.edu

Jeffrey Heer
University of Washington
Seattle, Washington, USA

jheer@uw.edu

Figure 1: Sculpin is a programming-by-demonstration (PbD) system for JSON. Sculpin is versatile: it can wrangle and extract
sub parts of JSON (1), or create interfaces atop it (2). In Sculpin, a user refines a selection and uses it to perform actions on the
data underneath. User actions are recorded into a timeline, which forms a reusable program.

Abstract
Many end-user programming tasks require programmatically pro-
cessing JSON, wrangling it from one format to another or building
interactive applications atop it. But end-users are impeded by the
indirectness and steep learning curve of textual code. We present
Sculpin, a direct-manipulation environment supporting a broad
range of JSON-transformation tasks. A user of Sculpin transforms
JSON data step by step, recording a program in the process. Sculpin

∗Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution 4.0 International License.
UIST ’25, Busan, Republic of Korea
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2037-6/25/09
https://doi.org/10.1145/3746059.3747651

makes three design commitments to ensure directness and versa-
tility: (1) steps are small and precise, not inferred; (2) steps are
general-purpose and open to re-appropriation; (3) steps operate on
JSON itself, rather than on a limited intermediate representation.
To support these commitments, Sculpin introduces a mechanism of
sculptable selections: the user can direct their action by guiding a
selection on top of the data through small steps like generalization
and hierarchical navigation. Sculpin also extends JSON with em-
bedded interface elements like form inputs and buttons, allowing
applications to be sculpted incrementally from source data. We
demonstrate the breadth and directness of Sculpin in use-cases
ranging from wrangling data to building applications. We evaluate
Sculpin through a heuristic analysis, situating it in a broad space of
programming systems and surfacing limitations such as difficulties
editing preexisting programs.

https://orcid.org/0000-0002-5154-9277
https://orcid.org/0000-0001-5984-9752
https://orcid.org/0000-0002-9425-0881
https://orcid.org/0000-0002-6175-1655
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3746059.3747651
mailto:jheer@uw.edu
mailto:dshayatpur@ucsd.edu
mailto:haijunxia@ucsd.edu
mailto:joho@uw.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3746059.3747651&domain=pdf&date_stamp=2025-09-27

UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea Joshua Horowitz, Devamardeep Hayatpur, Haijun Xia, and Jeffrey Heer

CCS Concepts
• Human-centered computing → Graphical user interfaces;
• Software and its engineering → Integrated and visual de-
velopment environments; Application specific development
environments.

Keywords
end-user programming, programming by demonstration, direct
manipulation

ACM Reference Format:
Joshua Horowitz, Devamardeep Hayatpur, Haijun Xia, and Jeffrey Heer.
2025. Sculpin: Direct-Manipulation Transformation of JSON. In The 38th
Annual ACM Symposium on User Interface Software and Technology (UIST
’25), September 28–October 01, 2025, Busan, Republic of Korea. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3746059.3747651

1 Introduction
JSON (JavaScript Object Notation) is a flexible, lightweight rep-
resentation of data that has emerged as a pervasive standard in
the Web era. Data ranging from API messages to document for-
mats to domain-specific programming languages are often rep-
resented as JSON. Consequently, programmatically transforming
JSON (processing it, visualizing it, and building interfaces atop it) is
a high-leverage skill for both professional software engineers and
technically-engaged end-users. These transformations are usually
performed with conventional programming languages which are
powerful but indirect: the user writes symbolic code (e.g. JavaScript)
to manipulate data rather than directly act on it. This can present
learning barriers for end-user programmers [31, 42], and limit the
directness and visibility of programming [2, 43, 45].

In contrast to coding, editors for everyday computer activities
like creating slide shows, drawing, and video editing feel control-
lable and live because they operate by principles of direct manipu-
lation (DM): users transform data through operations that produce
“immediately visible” effects on a “continuous representation of the
object of interest” [50]. These editors are versatile, suited to a broad
range of tasks. For example, a vector graphics editor can be used to
directly annotate a chart, or to lay out furniture on a floor plan.

How might we design a versatile, direct-manipulation editor
for programmatically transforming JSON? A long line of work in
programming by demonstration (PbD) systems has sought to bring
benefits of DM to programming. PbD systems enable users to spec-
ify programs by step-by-step demonstrations, and cover domains
such as web scraping [11], text [40], data visualization [48], tabular
data [29], and interactive systems [10]. However, these systems of-
ten (1) undermine directness through automatic inference, making
the effects of actions unpredictable and error recovery difficult [33],
and (2) are not versatile, as they are designed to streamline specific
workflows (e.g. web-scraping [11]) rather than operate on a broader
medium (e.g. JSON) that can support multiple workflows.

To overcome these limitations, we built Sculpin, a direct-mani-
pulation programming system for transforming JSON data. Sculpin
follows three design commitments to achieve directness and versa-
tility. To ensure directness, Sculpin’s operations are (1) small and
precise, avoiding leaps of inference. To ensure versatility, Sculpin’s

operations are (2) general-purpose and reappropriable and (3) de-
fined directly on their underlying medium (JSON), rather than on
an intermediate or parallel representation.

In Sculpin, users transforms JSON data step by step, recording
a program in the process. The user precisely directs their actions
by sculpting a selection on top of the data through small steps
like generalization and hierarchical navigation. The JSON medium
they work on is also extended to include interface elements like
form inputs and buttons, so Sculpin can be used to continuously
transform data into interfaces, using the same mechanisms that are
used to transform data into new data (Figure 1).

We evaluate Sculpin through three demonstrations: transform-
ing JSON from one format into another, building an API-backed
search interface, and crafting a document-backed TODO list appli-
cation. These demonstrations show that Sculpin can be used for
realistic programming tasks through continuous and familiar direct-
manipulation interactions. To more systematically evaluate Sculpin,
we apply a heuristic analysis using the "Technical Dimensions of
Programming Systems" (TDPS) taxonomy introduced by Jakubovic
et al. [28], which situates Sculpin in a space of related program-
ming systems. Among other findings, it highlights Sculpin’s tight
feedback loops, but points to unresolved challenges around editing
programs after writing them and specifying higher-level, semantic
steps. We close by speculating how our design commitments might
guide the creation of novel programming systems on diverse media
which share Sculpin’s expressivity and directness.

In summary, this paper contributes:
(1) Sculpin, a programming interface enabling direct-manipula-

tion transformation of a hybrid medium of JSON data and
interface elements.

(2) Evaluations of Sculpin through demonstrations and a heuris-
tic analysis.

2 Related Work

2.1 Programming by Demonstration
A rich line of work in programming by demonstration (PbD) attempts
to make programming possible for end-users by letting them demon-
strate an action and generating a reusable program from the demon-
stration. PbD systems have been explored for tasks like scraping
web pages [11], wrangling data [4, 29], creating charts [37, 46, 48]
and editing text [40]. Sculpin draws on many mechanisms that are
well-established in the PbD literature. For example, Sculpin displays
a history of user actions as a visible timeline (as in Chimera [32],
Smart Bookmarks [26], Drawing Dynamic Visualizations [54], and
commercial CAD software like Autodesk Fusion 360 [3]), and user
intent is specified by directing selections (see §2.3). Below, we de-
scribe three ways Sculpin positions itself among PbD systems to
achieve directness and versatility.

Small, precise steps. Direct manipulation (DM) is an interaction
paradigm which maximizes directness – the “qualitative feeling that
one is directly engaged with control of the objects – not with the
programs, not with the computer, but with the semantic objects of
our goals and intentions” [27]. In a DM interface, changes to objects
are incremental and immediately visible [50]. In contrast, many PbD
systems undermine directness by performing large-step inference

https://doi.org/10.1145/3746059.3747651

Sculpin: Direct-Manipulation Transformation of JSON UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea

of user intent from under-specified or implicit user actions using
heuristic or machine-learning techniques. Some of these systems,
like Eager [13], Metamouse [38], and Chimera [32], let users work
with conventional interfaces and then infer patterns from their
actions. Other systems, like FlashFill [20] and Wrex [15], are better
described as programming by example (PbE) as they synthesize code
entirely from input-output examples. In all these cases, inference
complicates a feeling of direct control over media, because a user’s
actions no longer translate into predictable effects. When too much
control is handed off to an inference-driven system, the user takes
on the role of a manager who acts out steps for an employee to
follow and then monitors the employee’s work to ensure it matches
their intent. The resulting distance between the user, the system’s
action, and the medium undermines the "confidence and mastery"
that direct manipulation ought to produce [50].1

Instead of using inference, some PbD systems present novel
palettes of interactions with which users can unambiguously ex-
press generalizable intent. This includes the earliest PbD system,
Pygmalion [51], and more recent work like Gneiss [8] and Vic-
tor’s "Drawing Dynamic Visualizations" demo [54]. Sculpin follows
this approach in order to ensure users stay in control, introducing
mechanisms like "sculptable selections" in lieu of inference.

General-purpose steps. PbD systems are often task specific. For
example, there is a rich line of work in web-scraping with direct
manipulation [11], and a separate line of work exploring how web
pages can be modified by direct manipulation [36]. Sculpin explores
the possibility of designing tools fit for a broader range of tasks
by centering actions on a medium – in Sculpin’s case, JSON. A
user of Sculpin can perform a broad range of tasks with the same
underlying mechanisms. This unity provides downstream benefits
like unexpected re-appropriations and skill transfer between tasks.

As an example of the possibilities that open up by working with
general-purpose operations in prior work, we can compare DM
chart authoring systems (Lyra [48], Charticulator [46] and Data Il-
lustrator [37]) to Victor’s "Drawing Dynamic Visualizations" demo
(DDV) [54]. Although Victor frames DDV as a tool for making data
visualizations, it actually provides general-purpose operations on
vector graphics (shapes) rather than higher-level operations specific
to the domain of data visualizations (marks, encodings, axes). As a
result, it can not only be used to plot datasets, but also to graph-
ically define simulations of dynamical systems; he demonstrates
an "implementation of the spring equation, specified entirely ge-
ometrically" [54]. By providing general-purpose operations, DDV
explores a broader space of possibilities, though it may take more
steps than more specialized tools to accomplish the same goals.

Working directly on a medium. Inspired by Bostock et al.’s [6]
principle of representational transparency, we seek to provide direct
access to our underlying medium (JSON) rather than replacing it
with intermediate representations. Representational transparency
makes it easier to maintain full expressivity within a medium. Re-
placing a medium with a new representation produces opportu-
nities for elements to be lost. For instance, Gneiss [9, 10] enables

1The impact of inference on directness exists on a spectrum, and can be relieved
through strategies like keeping inference to smaller steps and establishing shared
representations between users and inference engines [23].

processing JSON data by re-representing the data into a hierar-
chical spreadsheet structure. But this intermediate representation
leads to limitations: Gneiss cannot process JSON with certain struc-
tures, like record-sets stored in keyed objects rather than arrays,
and it cannot produce precisely-structured JSON for downstream
processes. Representational transparency also provides benefits for
accessibility: users can leverage their familiarity with the original
representation while working with the system.

2.2 JSON
Sculpin works on the medium of JSON data. We are interested
in JSON partially because of its ecological importance. JSON has
emerged as a lingua franca in the Web era. JSON is found in API
requests and responses, as a storage format in "NoSQL" databases,
and as a format for domain-specific languages [5, 39]. Furthermore,
runtime data in scripting languages like JavaScript and Python
often takes the form of data very much like JSON: assemblies of
arrays and records containing primitives like strings and numbers.
Because of the frequency and breadth of its use, we believe JSON
(or comparable "semi-structured data" like XML [1]) is a critical
target for end-user programming tools.

The most common way to create programs that work on JSON
is with traditional programming languages like JavaScript and
Python. Domain-specific languages are also available for working
on JSON [7, 14, 18]. We share some concepts with these languages,
such as selecting paths with wildcards and parallel operations on
sets, though we operationalize them as DM features rather than as
language features. Some systems explore DM programming atop
JSON or similar hierarchical formats. The one most similar to our ap-
proach is Gneiss [9, 10], which we discussed in §2.1. SIEUFERD [4]
applies a similar "nested relational model" approach [34], and works
on relational data rather than JSON itself.

2.3 Selections and Selectors
Selections are a universal part of direct manipulation systems. The
basic concept of selection has been extended and enriched over
time, to include multiple simultaneously editable selections [41],
generalization of selections according to specific attributes [24,
56], and the ability to navigate selections through structures [55].
Sculpin’s sculptable selections make use of all these developments.

Query languages like JSONPath [19, 22], XPath [47], and CSS
selectors [16] allow sets of nodes in a tree to be selected using paths
containing wildcards. Sculpin uses a similar approach, though we
extend it to support branching patterns and storing the results of
"filter" actions. We also use the internal structure of these patterns
to drive the behavior of structural actions (see §4.5.1).

3 Sculpin in Action
We introduce Sculpin with a scenario: Alex is visiting Los Angeles
during an art festival. The online website offers a list interface to
search for exhibitions, but not a map, which is what Alex needs
to find interesting exhibitions as they travel the area. Alex finds
a JSON API response backing the website which has data for all
exhibitions. Alex knows that if they could transform this into a
GeoJSON format, then they can easily feed it into an online tool.

UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea Joshua Horowitz, Devamardeep Hayatpur, Haijun Xia, and Jeffrey Heer

Figure 2: Sculpin can be used to reshape data: Alex turns JSON from a festival website into GeoJSON that can generate a map.

Sculpin: Direct-Manipulation Transformation of JSON UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea

Let’s follow Alex as they use Sculpin to turn their data into the
desired GeoJSON format:2

• Alex’s data starts as a list of exhibitions, where each exhibi-
tion contains an array of lat-lng objects. Alex’s first goal is to
flatten this data into a single list of lat-lngs with exhibition
titles. This can be done in two stages: first copy the titles
down into the lat-lng objects, and then bring these objects
up to the top level. Alex selects the first exhibition’s title
(1), and, in response, Sculpin surfaces a command palette
menu for possible next operations. Alex uses the palette to
generalize their selection across to the remaining titles (2

). Upon generalizing, Sculpin offers Alex an opportunity to
alter their generalization direction (indicated with a light
box). In this case, the default generalization to all titles is
already what Alex wants.

• With the titles selected, Alex drags them into the first loca-
tion (3). Sculpin then gives Alex an opportunity to gener-
alize the drop target to all entries in the locations arrays,
rather than just the first – which they take (4).

• Alex would like to extract the location objects as a flat list.
They shift the selection to the parent objects (5) and then
drag those objects out onto the root node (6).

• Finally, Alex selects each location (7) and uses the formula
input entry to transform the object into GeoJSON with a
small JavaScript template (8). Alex could have done this
transformation in smaller direct-manipulation steps, but
with the data already in the right place, they finds it eas-
ier to type out a formula. With data as GeoJSON, Alex then
copies it into an online tool to view a map of the art festivals.

At each step, the JSON data was visible, and manipulations were
directly and unambiguously performed on the concrete values. Alex
was able to draw on their existing knowledge of interaction idioms
like mouse-based direct manipulation and keyboard shortcuts. As
Alex interacted with the data, each step was recorded into a timeline
similar to the one in Figure 3 A . If new exhibitions are posted,
they can re-run this timeline with the new data to create a new
GeoJSON. Sculpin is also capable of creating styled interfaces from
JSON. Figure 3 B shows an alternate workflow where Alex groups
festival exhibitions by theme and then displays each exhibition’s
image in place. This example also uses Sculpin’s scratch space
feature, which allows extra data to be attached to any object.

4 Sculpin
Below, we describe Sculpin’s interface and implementation in full.

4.1 Interface
Figure 3 illustrates an annotated overview of Sculpin’s interface,
which consists of:

(A) Timeline: User actions are recorded into a linear timeline,
which represents the program the user is building. A user
can survey past JSON and selection states by hovering over
steps in the timeline.

2Some interface elements and data properties have been simplified for brevity.

Figure 3: An alternative workflow where images of exhibi-
tions are shown within Sculpin. The exhibitions are grouped
by theme, which has added a scratch space containing the
theme under each group.

(B) Workspace: The workspace provides a single, focal view of
Sculpin’s medium (JSON data with extensions, see below)
and a selection overlay on it.

(C) Description: A description of the current selection is shown
at the top as feedback for the action being performed.

(D) Command palette: Next to the selection overlay, Sculpin
shows a context menu containing a list of available actions
on the current selection, and a formula text entry which al-
lows input of JavaScript code for an "Apply formula" action.

(E) Run mode toggle: When Sculpin is used to define an interface
(as shown in §5.1 and §5.2), this toggle allows the user to
enter a mode where this interface is available for interaction
and program-editing features are disabled.

4.2 Medium
Sculpin’s medium is JSON, extended in two ways. First, we add the
ability to attach styles and user-interface elements to JSON nodes.
With this extension, Sculpin can transform JSON not only into new
JSON, but also into formatted displays and even interactive appli-
cations. Second, we provide scratch space: the ability to attach keys
and values to not just objects but also arrays and primitives. When
Sculpin is used to produce JSON output, the scratch space will not
be included; it is solely for intermediate computations. These two
extensions fit inside of JSON structures as lightweight augmenta-
tions, rather than replacing JSON with higher-level representations
– preserving our commitment to representational transparency.

UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea Joshua Horowitz, Devamardeep Hayatpur, Haijun Xia, and Jeffrey Heer

4.3 Selection
Sculpin uses a subject-verb metaphor for interaction. To specify
the subject of their actions, the user sculpts a selection. When an
action is performed, it acts on the selected part of the medium.

Selections in Sculpin support multiple selection, building off the
multiple-selection mechanisms that have long been available in
text editors [41]. When an action is applied to a selection with
multiple items, it applies to the items in parallel. This obviates
the need for loops in many cases, keeping the timeline linear and
spreading computation over space instead of time. To maintain full
expressivity, it is important that larger structural actions that draw
upon many selected items at once (like "Group by") be similarly
"loopable" from a single selection. To make this possible in Sculpin,
we represent selections with a tree of patterns we call a structured
selection (§4.5.1).

Users may sometimes want to select gaps – like the space be-
tween two array elements – where a part could be inserted by a
future action. Here, we use the concept of a "seam": a selectable
gap between parts. (In Figure 2 3 , Alex drags titles onto a seam to
insert them into objects.)

4.4 Actions
Sculpin provides two types of actions. A user selects a subject—their
direct object of interest—by sculpting a selection using selection
actions, and then operates on the parts underneath the selection
with medium actions.

Selection actions. Selections are a familiar pattern from direct
manipulation interfaces. In Sculpin, users also edit their selections
in small steps, which lets them specify their intent unambiguously
(without inference) and directly (on a concrete medium, not a sym-
bolic representation thereof). Four primary types of selection ac-
tions work together to fulfill this role. Concrete selection selects a
part of the JSON tree or a seam (space between values) directly, as in
a conventional editor. Typically, this is followed by generalization:
expanding from the particular selection to some broader category
by abstracting over some part of it. (In Figure 2, we show these
in steps 1 - 2 .) It is often later important to navigate a selection
through the medium. (Step 5 is an example of this, moving from
the location the title was dropped at to its parent.) Finally, filtering
means narrowing a selection to a subset based on the data under-
neath the items. (This is shown in Figure 1 1 .) Figure 4 A provides
a visual summary of selection actions and gestures to invoke them.

Medium actions. With a selection in hand, a user can specify edits
to the medium using either a per-item action, where each selected
item changes in the same way and does not alter surrounding
structure, or a structural action, where larger changes to the medium
occur. Figure 4 B illustrates medium actions and the gestures to
invoke them. Selection is maintained after medium actions, allowing
actions to be chained.

4.5 Implementation
Sculpin is a web application, developed with React in TypeScript.
It can be run as a standalone tool, or embedded into other web
applications with an iframe. Demos of Sculpin are available online.3

3http://sculpin-uist25.github.io/paper.html

Programs created with Sculpin are represented in a JSON format
which stores the steps recorded in the timeline. For example, the
program shown in Figure 3 is represented as:
1 [
2 { type: "MoveSelectionTo", path: [0, "image"] },
3 { type: "GeneralizeSelection", pattern: [0] },
4 { type: "ShowAs", show_as: "ImageFromURL" },
5 { type: "MoveSelectionTo", path: [0, "themes"] },
6 { type: "GroupBy" },
7]

Sculpin interprets this program format directly. This interpreter
logic could be split off for "headless" use of Sculpin programs.

4.5.1 Structured Selections. Sculpin uses a query-language-like
structure called structured selections to represent selections. Our
motivating example in §3 shows this structure at the top of each
screenshot, like / * / title in Figure 2 2 . This is a patterned path
consisting of a wildcard * , meaning "take every key", followed
by a concrete key title . Sculpin resolves each such path into a
concrete set of nodes shown highlighted in the data. Sculpin also
uses this structure to guide the behavior of structural operations.
For instance, steps Figure 2 3 - 4 construct a drag from / * / title

to / * / locations / * / title . Because these share a leading / * , the
drag becomes a loop of drags for each /x. The target contains an
additional wildcard, so a nested loop is added: each /x/ title is
dragged to each /x/ locations /y/ title . This automatic looping
behavior extends across the actions Sculpin supports and is essential
to Sculpin’s expressivity.

As described so far, structured selections match a subset of the
JSONPath query language [19, 22], with novel semantics for actions
like drag-and-drop. Sculpin adds two features: branching selections,
which make patterned paths into patterned trees, and recording
data-specific "exclusions" onto wildcards to support filtering. These
features were not used in Figure 2, but are used in the following
demos (§5). Appendix A further describes structured selections.

Note that selections in Sculpin are defined as patterns starting
from the root of the JSON tree, proceeding a fixed number of steps.
While they can refer to data at any fixed depth in the tree, they
cannot refer to data at an unknown depth in the tree. This becomes
a limitation if a user wishes to refer to arbitrarily-nested recursive
structures, as might occur in ASTs of program code.

5 Further Demonstrations
We first demonstrated Sculpin in the map-making example in Fig-
ure 2. To further evaluate its expressive range, we now present two
more demonstrations of it in use. To cover more ground, we will
go into less step-by-step detail than we did in Figure 2.

5.1 Lightweight App: Image Quilt
With Sculpin, users can transform JSON not just into different JSON,
but into user-facing interfaces. To do so, they use actions that apply
styles to nodes or turn them into interface elements (e.g. turning
booleans into checkboxes). The resulting interface, available in
Sculpin’s run mode, can be used to edit the original data: operations
on output elements bidirectionally change the input.

http://sculpin-uist25.github.io/paper.html

Sculpin: Direct-Manipulation Transformation of JSON UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea

Figure 4: A summary of selection actions (A) and medium actions (B) in Sculpin.

UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea Joshua Horowitz, Devamardeep Hayatpur, Haijun Xia, and Jeffrey Heer

Figure 5: Sculpin can make lightweight interfaces. Above, we
create an interactive gallery application that shows artwork
from the Art Institute of Chicago [53] matching a provided
query. (Recreation of example from Horowitz and Heer [25].)

In Figure 5, we create an interactive image gallery of artworks
using the Art Institute of Chicago API [53], demonstrating how a
lightweight interface can be built up entirely within Sculpin.

The example begins by duplicating the query text (1) to keep
it available for editing later. Once the text is adapted into a URL,
this URL can be fetched with an action that replaces it with the
HTTP response (2). As the response is sculpted, parts of it can be
restyled (4 , 5) using natural extensions of data-editing actions in
Sculpin. Once the interface is constructed, we can interact with it
by entering run mode where input values that are transformed into
interface elements (without modification) can be edited. As such,
the query text is editable (the system has tracked that it originated
in a piece of the input). Changing the text updates the input and
reruns the program (6), producing a reactive interface.

Note that even after restyling, Sculpin maintains a close-to-data,
‘wires sticking out’ aesthetic. For example, object keys are shown
even in the final interface. While a version of Sculpin could provide
tight control over styling, we pursue this aesthetic to make handles
on data visible for future modification, as we discuss in §8.2.

5.2 Document-Backed App: TODO List
Figure 6 illustrates how Sculpin can be used to make a TODO-list
app atop a JSON document. We take as our premise a team building
a shared TODO list app, where each item is assigned to a member.

This demonstration exercises a new feature of Sculpin: program-
ming button presses. To add functionality on the Add todo button,
we enter a mode to record a click action on the button (5 , 6). In
this mode, our actions are recorded onto a separate timeline which
will act on the input data whenever the button is clicked. The same
data shaping functionalities of Sculpin are available for this task.
We drag the text into the list items and use a formula to reshape it
into a TODO item format (7 , 8). Later, in run mode, pressing the
button adds a new item into the list (10).

For this application to be useful, it must be embedded in an in-
frastructure that persists JSON documents. For this purpose, we
used Patchwork [35], a platform for shareable data and tools com-
parable to Webstrates [30]. We elaborate on how open platforms
like these could open up more uses for Sculpin in §8.2.

6 Heuristic Evaluation
While our demonstrations of Sculpin show its range and directness,
more systematic evaluation is necessary to characterize its limits.
Towards that end, this section analyzes Sculpin according to the
"Technical Dimensions of Programming Systems" (TDPS) taxonomy
introduced by Jakubovic et al. [28]. The first two authors indepen-
dently analyzed Sculpin dimension-by-dimension. Our discussion
here synthesizes their results.

Feedback loops. This dimension refers to how systems bridge the
gulfs of evaluation and execution [27]. Several aspects of Sculpin
help bridge the gulf of evaluation: small-step actions make feedback
loops short, and local actions focus attention on what must be re-
viewed after an action. Sculpin’s formula editor could be improved:
it provides no feedback until a formula is fully entered and applied.
Sculpin’s approach to bridging the gulf of execution is to show all
available data in a single view so users can see precisely what they
have to work with. Sculpin also shows all available actions in the

Sculpin: Direct-Manipulation Transformation of JSON UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea

Figure 6: A TODO list being built with Sculpin. Steps 1 – 5 restyle the list into an interface that groups tasks by assignee and
dims completed tasks. Steps 6 – 9 record an action for the "Add todo" button: adding a new task and clearing the text input.
(Step 4 uses a ‘dim’ restyle action that lowers opacity of selected elements.)

UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea Joshua Horowitz, Devamardeep Hayatpur, Haijun Xia, and Jeffrey Heer

command palette. This provides guidance roughly comparable to a
method auto-complete feature in a conventional coding environ-
ment. We also note that Sculpin’s emphasis on small-step actions
may present challenges for bridging the gulf of execution. It may
be difficult for users to bridge the "semantic distance" between their
larger goals and the small steps Sculpin provides [27].

Modes of interaction. Sculpin was deliberately designed to min-
imize the use of modes. For instance, drag-and-drop interactions
with generalized targets were originally specified by sculpting the
target of the drag-and-drop in a mode. We abandoned this approach
in favor of the current approach in which drag-and-drop occurs im-
mediately (without generalization) and the target can then be gener-
alized modelessly. Sculpin does have separate modes for "recording"
and "running". While this distinction serves a clear function (should
edits affect the program or the input data?), blurring these lines
could open up new possibilities.

Conceptual integrity vs openness. "Conceptual integrity" means
employing "unified concepts that may compose orthogonally to gen-
erate diversity" [28]. Sculpin’s design is built around several con-
ceptual unifications: Actions are used to modify both media and se-
lections. Medium actions allow both changes to data and restylings.
Action timelines are used to make application views out of data
and to define the behavior of button presses.

Factoring of complexity. "Factoring of complexity" asks what
means a programming system provides for hiding details inside
reusable components. In practical use of Sculpin, users will likely
want to define, use, and share higher-level operations – a feature
Sculpin currently lacks. We imagine higher-level operations like
this could be defined inside our system as timelines to be called
from timelines, like functions in traditional programming languages.
Questions remain about the detailed design of such a feature, such
as how multiple "arguments" could be provided to such an oper-
ation, and how a continuous, direct-manipulation feeling can be
maintained as operations grow in size.

Level of automation. While many PbD systems are based around
inferring intent from user actions, Sculpin is designed to let users
express intent unambiguously (§2.1). The only place Sculpin devi-
ates from this discipline is in its "Generalize" action, which uses
heuristics to pick a default axis for generalization. This feels innocu-
ous to us, as the system simultaneously reveals alternative axes and
makes it easy for the user to switch – the heuristic inference is not
a bottleneck, but a transparent, optional shortcut.

Error response. A Sculpin program might run into errors in two
different situations: (1) A user records an action that produces
an error: Because the timeline in Sculpin can be freely navigated,
the user can undo the action and try again. (2) New input comes
into a program and causes an error in an intermediate step: As we
discuss further in §7, Sculpin does not yet have the means to modify
intermediate steps in programs.

Learnability. The learnability of Sculpin is untested. That said,
we have reasons to think it may fare well: Sculpin builds on familiar
direct-manipulation techniques like drag-and-drop. Also, Sculpin
provides fast feedback for user actions, so users can quickly learn
the consequences of their actions. The "conceptual integrity" of

Sculpin (described above) will aid learners by "collapsing stacks",
using the same concepts and interactions to craft user interfaces
as it uses to transform data between formats. On the other hand,
Sculpin’s generality may make it harder for learners to adapt it to
their needs, compared to a more task-specific system [42].

7 Limitations
A complete version of Sculpin would provide additional actions
(e.g. joins4). However, certain questions remain unresolved.

How can programs be edited in the middle? A significant limita-
tion in Sculpin is the inability to edit intermediate parts of a program.
A Sculpin program can only be edited by appending actions to the
end of the timeline or by undoing actions. Many situations call
for adjusting actions partway through a program (e.g. adapting a
program to respond to an error triggered by new data). There are
easy ways to begin to remedy this, like adding a movable "cursor"
in the timeline to allow actions to be inserted at any point, but this
raises new questions. For instance, what happens if a modification
breaks the part of a program after the modification?5

How might users better work with unpredictable data? Like most
PbD systems, Sculpin works best in situations with predictable in-
puts. A Sculpin user builds a program atop a representative input,
which guides the actions they apply. If new inputs arrive with
different structures, the program is unlikely to work correctly. Es-
tablished PbD techniques, like examining multiple inputs in parallel,
might ameliorate this problem [44].

How can loops and control flow be specified? Sculpin’s multiple-
selection system makes it easy to apply an action across items in
collections, equivalent to a functional "map" operation. However,
Sculpin does not have a imperative-style looping construct – its
timeline is always linear. There are certainly contexts in which
"map" is not enough; say, implementing a custom aggregation rou-
tine that must loop over a list while maintaining state. This could
be addressed by adding loops to the timeline [54] or using recursive
calls [17], but these both complicate Sculpin’s linear timeline, sac-
rificing some measure of directness. Fortunately, general-purpose
loops may not be as important to end-user programmers as higher-
level operations like "map", which Sculpin supports well through
multiple selections: “End-user programmers most often use sys-
tems where they do not write loops. Instead, they use vector-based
operations — doing something to a whole dataset at once” [21].

How might Sculpin be used to build varied interfaces? When trans-
forming JSON into a user-facing interface, a Sculpin user can only
express a limited range of interfaces – those consisting of editable
primitive values and script-invoking buttons. Sculpin does not cur-
rently support common interface patterns like: (1) direct manipula-
tions that change the structure of collections, like dragging cards
on a kanban board, (2) mouse events like hovering, (3) controllable
reactivity, such as debouncing, throttling, and memoization.

4Gneiss [10] and SIEUFERD [4] both show how the results of joins can be represented
as nested data which is easy to represent in JSON.
5Bakke and Karger [4] characterize difficulty with edits as a shared limitation of what
they call "algebraic" interfaces, a category to which Sculpin belongs.

Sculpin: Direct-Manipulation Transformation of JSON UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea

Figure 7: An imagined system modeled after Sculpin but applied to web pages rather than JSON, sorting links on a news
aggregator (1 – 2) and pulling in comments from linked pages (3 – 6).

How might Sculpin be more usable? As a prototype, there are
numerous ways Sculpin’s usability could be improved. Promising
directions include: (1) Feedforward. Previewing the effects of ac-
tions (like drags) would make it easier for users to fluidly explore
and perform actions. (2) Working with selections symbolically. A
Sculpin user usually interacts with a selection as a concrete over-
lay on JSON. However, in some cases it may be easier to edit a
selection’s symbolic representation as a tree of patterns. (3) Anima-
tions. Sculpin aspires to create the feeling of a material changing
continuously. Animations (e.g. of drag operations) could support
this. (4) Controlling focus. When data becomes complex, it becomes
essential to find ways to focus the view on parts of interest. (5)
Organizing actions. Actions in Sculpin are accessed through a long
list. Different means of accessing and triggering actions (such as
toolbars) might make them more organized and discoverable.

8 Discussion & Future Work

8.1 Media beyond JSON
We believe the approach Sculpin takes to scripting transformations
of JSON might be applicable to media beyond JSON. As an example,

Figure 7 shows a sketch of how Sculpin’s mechanisms (like sculpt-
able, structured selections and drag-and-drop) could be repurposed
to a medium consisting of web pages connected by links. While
this figure shows a user customizing an existing web page to add
features, the system we imagine here would not be specific to this
task. Like Sculpin, it would provide medium-wide general-purpose
operations, and could also support other tasks on web pages, like
building scripts for web scraping (as in Rousillon [11]).

Sculpin’s approach generalizes smoothly to new media because it
preserves its subject medium. Many PbD systems instead substitute
newly invented representations for the original representations
of a medium’s conventional editor, mixing programmatic struc-
tures into their media. As an example, Gneiss [9, 10] persistently
stores user actions like sorts and groupings inside its spreadsheet
representation. Approaches like these are medium-specific, and
challenging to generalize to new media. In contrast, Sculpin pro-
vides programmatic power through overlays (like the selection &
timeline) that are generic across media. For this reason, we believe
that a Sculpin-like system may facilitate direct-manipulation pro-
gramming on diverse media beyond JSON, from text documents to
vector graphics.

UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea Joshua Horowitz, Devamardeep Hayatpur, Haijun Xia, and Jeffrey Heer

8.2 Blending Data and Interfaces
Sculpin blends together data and interfaces into a single medium.6

This is useful when building a traditional interface, as data struc-
tures act as "scaffolding" for parts of the interface that haven’t been
built yet. It also opens up further applications:

(1) Sculpin could incrementally style output data displayed in
a live programming system like a computational notebook
(e.g. certain values become headings, others become rows).

(2) Hybrids between between data and interface can act as
purpose-specific tools. A colleague using Patchwork [35]
wanted to retrieve text from a comment that had been deleted
off a document. Using an embedding of Sculpin within Patch-
work, we were able to quickly craft an alternative interface
that showed all comments (including deleted ones) in a table,
making it easy to find the desired comment. In this context,
tools made with Sculpin can route around limitations of a
primary editor – a hint of "malleable software" [35, 52].

(3) Interfaces built with Sculpin might maintain and expose
enough structure that they could be interacted with pro-
grammatically. For instance, a user using the "TODO" app
(§5.2) might use Sculpin’s generalization features to batch-
select todos associated with a given user and check them all
in a single action. They would do this not with a feature im-
plemented by the interface author, but using a general, open-
ended feature of Sculpin. This relies on our "wires-sticking-
out" approach to interfaces: even when data is shaped into
an interface, the structure of the data is still visible to the
user and accessible to programmatic action.

8.3 Bidirectional programming
Bidirectional programming is a form of PbD in which demonstra-
tions perform edits on ordinary, human-editable code [12]. This
approach has a number of possible benefits – it offers a clear rep-
resentation of the underlying program and affords an alternative
route for editing it. This ameliorates a number of classic issues with
PbD articulated by Lau [33]. Sculpin’s current implementation is
subject to these classic issues. Although Sculpin exposes a represen-
tation of the program in the form of a timeline, it is not designed as
an independently legible artifact. Furthermore, as discussed in §7,
this timeline representation is not directly editable. A bidirectional
approach might resolve these issues, though it may be complex to
implement, as Sculpin’s construction and use of selections does not
map line-by-line to idiomatic code in a language like Python.

9 Conclusion
This work contributes Sculpin, a programming-by-demonstration
system for transforming JSON data into new forms and interactive
applications. Sculpin aims for directness and versatility by offering
operations that: are small & precise, are general-purpose, and are
defined directly on the medium. To achieve these goals, Sculpin uses a
novel mechanism called sculptable selections where a user specifies
the target of their action in small, deliberate steps. Sculpin also
extends JSON to a hybrid medium with interface elements, so that
its mechanisms can be used to incrementally transform data into

6We were inspired by Schmitz’s demonstration [49] of gradually building up an inter-
face from a JSON skeleton.

interfaces. Our examples of Sculpin in use and a heuristic analysis
demonstrate Sculpin’s directness and versatility, while revealing the
need for new techniques to make Sculpin programs fluidly editable.
The principles that underlay Sculpin’s design seem well-suited to
generalization to new media beyond JSON, which may help bring
direct-manipulation programming to diverse end-user contexts.

Acknowledgments
We thank Brian Hempel, Matthew Beaudouin-Lafon, Alice Chung,
Amy Ko, Edward Misback, Josh Pollock, Emilia Rosselli Del Turco,
Fuling Sun, and the anonymous reviewers for their valuable feed-
back. This material is based upon work supported by the National
Science Foundation under Grant No. 2432644. This work was in-
spired by the vision and optimism of Yoshiki Schmitz, and we
dedicate it to his memory.

References
[1] Serge Abiteboul. 1997. Querying semi-structured data. In Database Theory —

ICDT ’97, Foto Afrati and Phokion Kolaitis (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 1–18.

[2] Leif Andersen, Michael Ballantyne, and Matthias Felleisen. 2020. Adding Inter-
active Visual Syntax To Textual Code. Proceedings of the ACM on Programming
Languages (PACMPL), Issue OOPSLA (2020). https://doi.org/10.1145/3428290

[3] Autodesk. 2025. Fusion Help | Use the Timeline.
https://help.autodesk.com/view/fusion360/ENU/?guid=ASM-USE-TIMELINE.

[4] Eirik Bakke and David R. Karger. 2016. Expressive Query Construction through
Direct Manipulation of Nested Relational Results. In Proceedings of the 2016
International Conference on Management of Data. ACM, San Francisco California
USA, 1377–1392. doi:10.1145/2882903.2915210

[5] Marcel Borowski, Luke Murray, Rolf Bagge, Bager Kristensen, Arvind Satya-
narayan, and Clemens Nylandsted Klokmose. 2022. Varv: Reprogrammable
Interactive Software as a Declarative Data Structure. Proceedings of the 2022 CHI
Conference on Human Factors in Computing Systems (2022).

[6] M. Bostock, V. Ogievetsky, and J. Heer. 2011. D3 Data-Driven Documents. IEEE
Transactions on Visualization and Computer Graphics 17, 12 (Dec. 2011), 2301–2309.
doi:10.1109/TVCG.2011.185

[7] Pierre Bourhis, Juan L. Reutter, Fernando Suárez, and Domagoj Vrgoč. 2017. JSON:
Data model, Query languages and Schema specification. In Proceedings of the
36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems
(Chicago, Illinois, USA) (PODS ’17). Association for Computing Machinery, New
York, NY, USA, 123–135. doi:10.1145/3034786.3056120

[8] Kerry Shih-Ping Chang and Brad A. Myers. 2014. Creating Interactive Web Data
Applications with Spreadsheets. In Symposium on User Interface Software and
Technology (UIST).

[9] Kerry Shih-Ping Chang. 2016. A Spreadsheet Model for Using Web Services and
Creating Data-Driven Applications. Ph. D. Dissertation. Carnegie Mellon Univer-
sity.

[10] Kerry Shih-Ping Chang and Brad A. Myers. 2016. Using and Exploring Hi-
erarchical Data in Spreadsheets. In Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems (San Jose, California, USA) (CHI
’16). Association for Computing Machinery, New York, NY, USA, 2497–2507.
doi:10.1145/2858036.2858430

[11] Sarah E. Chasins, Maria Mueller, and Rastislav Bodík. 2018. Rousillon: Scraping
Distributed Hierarchical Web Data. In The 31st Annual ACM Symposium on User
Interface Software and Technology, UIST 2018, Berlin, Germany, October 14-17, 2018,
Patrick Baudisch, Albrecht Schmidt, and Andy Wilson (Eds.). ACM, 963–975.
doi:10.1145/3242587.3242661

[12] Ravi Chugh. 2016. Prodirect manipulation: bidirectional programming for the
masses. In Proceedings of the 38th International Conference on Software Engineering
Companion (Austin, Texas) (ICSE ’16). Association for Computing Machinery,
New York, NY, USA, 781–784. doi:10.1145/2889160.2889210

[13] Allen Cypher. 1991. EAGER: Programming Repetitive Tasks by Example. In
Conference on Human Factors in Computing Systems (CHI). https://doi.org/10.
1145/108844.108850

[14] Stephen Dolan. 2025. jq. https://jqlang.org/.
[15] Ian Drosos, Titus Barik, Philip J Guo, Robert DeLine, and Sumit Gulwani. 2020.

Wrex: A Unifed Programming-by-Example Interaction for Synthesizing Readable
Code for Data Scientists. Conference on Human Factors in Computing Systems
(CHI) (2020).

[16] Elika J. Etemad and Tab Atkins Jr. 2022. Selectors Level 4. https://www.w3.org/
TR/selectors-4/. W3C Working Draft, 11 November 2022.

https://doi.org/10.1145/3428290
https://doi.org/10.1145/2882903.2915210
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1145/3034786.3056120
https://doi.org/10.1145/2858036.2858430
https://doi.org/10.1145/3242587.3242661
https://doi.org/10.1145/2889160.2889210
https://doi.org/10.1145/108844.108850
https://doi.org/10.1145/108844.108850
https://www.w3.org/TR/selectors-4/
https://www.w3.org/TR/selectors-4/
https://jqlang.org
https://help.autodesk.com/view/fusion360/ENU/?guid=ASM-USE-TIMELINE

Sculpin: Direct-Manipulation Transformation of JSON UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea

[17] Elliot Evans and Josh Horowitz. 2024. An invitation into Droste’s Lair.
https://vezwork.github.io/drostes-lair-post/.

[18] Daniela Florescu and Ghislain Fourny. 2013. JSONiq: The History of a Query
Language. IEEE Internet Computing 17 (2013), 86–90.

[19] Stefan Gössner, Glyn Normington, and Carsten Bormann. 2024. JSONPath: Query
Expressions for JSON. RFC 9535 (2024), 1–62. https://api.semanticscholar.org/
CorpusID:268023987

[20] Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using
Input-Output Examples. In Symposium on Principles of Programming Languages
(POPL).

[21] Mark Guzdial. 2025. CS doesn’t have a monopoly on computing education: Pro-
gramming is for everyone. https://computinged.wordpress.com/2025/03/05/cs-
doesnt-have-a-monopoly-on-computing-education-programming-is-for-
everyone/.

[22] Stefan Gössner, Glyn Normington, and Carsten Bormann. 2024. JSONPath: Query
Expressions for JSON. RFC 9535. doi:10.17487/RFC9535

[23] Jeffrey Heer. 2019. Agency plus automation: Designing artificial intelligence into
interactive systems. Proceedings of the National Academy of Sciences 116, 6 (Feb.
2019), 1844–1850. doi:10.1073/pnas.1807184115

[24] Jeffrey Heer, Maneesh Agrawala, and Wesley Willett. 2008. Generalized selection
via interactive query relaxation. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (Florence, Italy) (CHI ’08). Association
for Computing Machinery, New York, NY, USA, 959–968. doi:10.1145/1357054.
1357203

[25] Joshua Horowitz and Jeffrey Heer. 2023. Engraft: An API for Live, Rich, and
Composable Programming. In Proceedings of the 36th Annual ACM Symposium
on User Interface Software and Technology (San Francisco, CA, USA) (UIST ’23).
Association for Computing Machinery, New York, NY, USA, Article 72, 18 pages.
doi:10.1145/3586183.3606733

[26] Darris Hupp and Robert C. Miller. 2007. Smart bookmarks: automatic retroactive
macro recording on the web. In Proceedings of the 20th Annual ACM Symposium
on User Interface Software and Technology (Newport, Rhode Island, USA) (UIST
’07). Association for Computing Machinery, New York, NY, USA, 81–90. doi:10.
1145/1294211.1294226

[27] Edwin L. Hutchins, James D. Hollan, and Donald A. Norman. 1985. Direct
Manipulation Interfaces. Hum. Comput. Interact. 1, 4 (1985), 311–338. doi:10.
1207/s15327051hci0104_2

[28] Joel Jakubovic, Jonathan Edwards, and Tomas Petricek. 2023. Technical Dimen-
sions of Programming Systems. The Art, Science, and Engineering of Programming
7, 3 (Feb. 2023), 13. doi:10.22152/programming-journal.org/2023/7/13 tdops.

[29] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. 2011. Wran-
gler: interactive visual specification of data transformation scripts. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. ACM, Vancou-
ver BC Canada, 3363–3372. doi:10.1145/1978942.1979444

[30] Clemens N. Klokmose, James R. Eagan, Siemen Baader, Wendy Mackay, and
Michel Beaudouin-Lafon. 2015. Webstrates: Shareable Dynamic Media. In Proceed-
ings of the 28th Annual ACM Symposium on User Interface Software & Technology.
ACM, Charlotte NC USA, 280–290. doi:10.1145/2807442.2807446

[31] Amy J. Ko, Brad A. Myers, and Htet Htet Aung. 2004. Six Learning Barriers in
End-User Programming Systems. In 2004 IEEE Symposium on Visual Languages -
Human Centric Computing. IEEE, Rome, Italy, 199–206. doi:10.1109/VLHCC.2004.
47

[32] David Kurlander and Steven Feiner. 1992. A history-based macro by example
system. In Proceedings of the 5th annual ACM symposium on User interface software
and technology. ACM, Monteray California USA, 99–106. doi:10.1145/142621.
142633

[33] Tessa Lau. 2009. Why Programming-By-Demonstration Systems Fail: Lessons
Learned for Usable AI. AI Magazine (2009). http://www.aaai.org/ojs/index.php/
aimagazine/article/view/2262

[34] Mark Levene and George Loizou. 1994. The nested universal relation data model.
J. Comput. System Sci. 49, 3 (1994), 683–717. doi:10.1016/S0022-0000(05)80076-5
30th IEEE Conference on Foundations of Computer Science.

[35] Geoffrey Litt, Josh Horowitz, Peter van Hardenberg, and Todd Matthews. 2025.
Malleable Software: Restoring User Agency in a World of Locked-Down Apps. Tech-
nical Report. Ink & Switch. https://www.inkandswitch.com/essay/malleable-
software/ Accessed: 2025-06-10.

[36] Geoffrey Litt, Daniel Jackson, Tyler Millis, and Jessica Ayeley Quaye. 2020. End-
user software customization by direct manipulation of tabular data. In Proceedings
of the 2020 ACM SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, Onward! 2020, Virtual, November,
2020. ACM, 18–33. doi:10.1145/3426428.3426914

[37] Zhicheng Liu, John Thompson, Alan Wilson, Mira Dontcheva, James Delorey, Sam
Grigg, Bernard Kerr, and John Stasko. 2018. Data Illustrator: Augmenting Vector
Design Tools with Lazy Data Binding for Expressive Visualization Authoring. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
ACM, Montreal QC Canada, 1–13. doi:10.1145/3173574.3173697

[38] David L. Maulsby, Ian H. Witten, and Kenneth A. Kittlitz. 1989. Metamouse:
Specifying Graphical Procedures by Example. In Conference on Computer Graphics

and Interactive Techniques (SIGGRAPH).
[39] Andrew M Mcnutt. 2022. No Grammar to Rule Them All: A Survey of JSON-style

DSLs for Visualization. IEEE Transactions on Visualization and Computer Graphics
29 (2022), 160–170.

[40] Robert C. Miller. 2002. Lightweight structure in text. Ph. D. Dissertation. Carnegie
Mellon University.

[41] Robert C. Miller and Brad A. Myers. 2001. Interactive Simultaneous Editing of
Multiple Text Regions. In USENIX Annual Technical Conference, General Track.
161–174.

[42] Bonnie A. Nardi. 1993. A small matter of programming: perspectives on end user
computing. MIT Press, Cambridge, MA.

[43] Cyrus Omar, David Moon, Andrew Blinn, Ian Voysey, Nick Collins, and Ravi
Chugh. 2021. Filling Typed Holes with Live GUIs. In Conference on Programming
Language Design and Implementation (PLDI). https://doi.org/10.1145/3453483.
3454059

[44] David Rauch, Patrick Rein, Stefan Ramson, Jens Lincke, and Robert Hirschfeld.
2019. Babylonian-style Programming - Design and Implementation of An Integra-
tion of Live Examples Into General-purpose Source Code. Art Sci. Eng. Program.
3, 3 (2019), 9. doi:10.22152/programming-journal.org/2019/3/9

[45] Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and Tobias Pape.
2019. Exploratory and Live, Programming and Coding - A Literature Study
Comparing Perspectives On Liveness. The Art, Science, and Engineering of Pro-
gramming Journal (2019). doi:10.22152/programming-journal.org/2019/3/1

[46] Donghao Ren, Bongshin Lee, and Matthew Brehmer. 2019. Charticulator: Interac-
tive Construction of Bespoke Chart Layouts. IEEE Transactions on Visualization
and Computer Graphics 25, 1 (Jan. 2019), 789–799. doi:10.1109/TVCG.2018.2865158

[47] Jonathan Robie, Michael Dyck, and Josh Spiegel. 2017. XML Path Language
(XPath) 3.1. https://www.w3.org/TR/xpath-3/. W3C Recommendation, 21 March
2017.

[48] Arvind Satyanarayan and Jeffrey Heer. 2014. Lyra: An Interactive Visualization
Design Environment: Lyra: An Interactive Visualization Design Environment.
Computer Graphics Forum 33, 3 (June 2014), 351–360. doi:10.1111/cgf.12391

[49] Yoshiki Schmitz. 2025. yoshiki on X: "I noticed when frontend work that I write
a lot of code just iterating over data structures and extracting text from them into
text nodes. I thought: what if we just rendered everything upfront, and then told
the computer how we want it to look?" / X. https://x.com/yoshikischmitz/status/
1176643658591793153

[50] Ben Shneiderman. 1983. Direct Manipulation: A Step Beyond Programming
Languages. Computer (August 1983).

[51] David Canfield Smith. 1975. Pygmalion: A Creative Programming Environment.
Ph. D. Dissertation. Stanford University.

[52] Philip Tchernavskij. 2019. Designing and Programming Malleable Software. Ph. D.
Dissertation. Université Paris-Saclay, École doctorale nº580 Sciences et Technolo-
gies de l’Information et de la Communication (STIC).

[53] The Art Institute of Chicago. 2025. Public API | The Art Institute of Chicago.
https://www.artic.edu/open-access/public-api

[54] Bret Victor. 2013. Drawing Dynamic Visualizations. https://vimeo.com/66085662.
Presented at the Stanford HCI seminar on February 1, 2013.

[55] Philippe Voinov, Manuel Rigger, and Zhendong Su. 2022. Forest: Structural Code
Editing with Multiple Cursors. In Proceedings of the 2022 ACM SIGPLAN Interna-
tional Symposium on New Ideas, New Paradigms, and Reflections on Programming
and Software (Auckland, New Zealand) (Onward! 2022). Association for Comput-
ing Machinery, New York, NY, USA, 137–152. doi:10.1145/3563835.3567663

[56] Haijun Xia, Bruno Araujo, and Daniel Wigdor. 2017. Collection Objects: Enabling
Fluid Formation and Manipulation of Aggregate Selections. In Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems (Denver, Colorado,
USA) (CHI ’17). Association for Computing Machinery, New York, NY, USA,
5592–5604. doi:10.1145/3025453.3025554

A Selection Mechanism
This appendix provides more details on Sculpin’s selection mecha-
nism, previously introduced in §4.5.1

Extensions. Sculpin makes two extensions to simple JSONPath-
like paths: First, rather than proceeding linearly down a path, struc-
tured selections can branch at any point, forming a tree of patterns.
For instance, a structured selection on [{a: 1, b: 2}] might start
with a wildcard / * , followed by a branch to / a in parallel with a

branch to / b . We notate this selection as .

https://api.semanticscholar.org/CorpusID:268023987
https://api.semanticscholar.org/CorpusID:268023987
https://doi.org/10.17487/RFC9535
https://doi.org/10.1073/pnas.1807184115
https://doi.org/10.1145/1357054.1357203
https://doi.org/10.1145/1357054.1357203
https://doi.org/10.1145/3586183.3606733
https://doi.org/10.1145/1294211.1294226
https://doi.org/10.1145/1294211.1294226
https://doi.org/10.1207/s15327051hci0104_2
https://doi.org/10.1207/s15327051hci0104_2
https://doi.org/10.22152/programming-journal.org/2023/7/13
https://doi.org/10.1145/1978942.1979444
https://doi.org/10.1145/2807442.2807446
https://doi.org/10.1109/VLHCC.2004.47
https://doi.org/10.1109/VLHCC.2004.47
https://doi.org/10.1145/142621.142633
https://doi.org/10.1145/142621.142633
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2262
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2262
https://doi.org/10.1016/S0022-0000(05)80076-5
https://www.inkandswitch.com/essay/malleable-software/
https://www.inkandswitch.com/essay/malleable-software/
https://doi.org/10.1145/3426428.3426914
https://doi.org/10.1145/3173574.3173697
https://doi.org/10.1145/3453483.3454059
https://doi.org/10.1145/3453483.3454059
https://doi.org/10.22152/programming-journal.org/2019/3/9
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.1109/TVCG.2018.2865158
https://www.w3.org/TR/xpath-3/
https://doi.org/10.1111/cgf.12391
https://x.com/yoshikischmitz/status/1176643658591793153
https://x.com/yoshikischmitz/status/1176643658591793153
https://www.artic.edu/open-access/public-api
https://doi.org/10.1145/3563835.3567663
https://doi.org/10.1145/3025453.3025554
https://vimeo.com/66085662
https://computinged.wordpress.com/2025/03/05/cs
https://vezwork.github.io/drostes-lair-post

UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea Joshua Horowitz, Devamardeep Hayatpur, Haijun Xia, and Jeffrey Heer

Figure 8: Using Sculpin to make a list of friends with cats, illustrating how structured selections guide the action.

Figure 9: Drag-and-drop actions in Sculpin can A move values, B gather them together, or C spread them apart, depending on
the structure of the source and target selections.

Second, wildcard steps can mark some paths in the data as "ex-
cluded", in order to represent the results of a data-based filter oper-
ation.7 We summarize exclusions in our notation with a subscript
marking how many paths have been excluded: / * / a

-5
. These two

extensions of JSONPath can interact: if a selection contains multi-
ple paths branching after a wildcard, exclusions recorded on that
wildcard will apply to all the branches.

Walkthrough. To further describe how structured selections en-
able structural navigation and sculpting operations, Figure 8 shows
how a user might use Sculpin to make a list of friends with cats:
(1) They select a node in the data, which sets the selection to

/ friends / 1 / hasCat , a path of definite steps.
(2) Next, the user hits Ctrl-A to "Generalize" the selection. This

action converts a single definite step in the pattern-path
into a wildcard step. There are two possible generalizations:
/ friends / * / hasCat and / friends / 1 / * . (A third option,
/ * / 1 / hasCat would be possible, but this adds no additional
nodes to the selection, so Sculpin does not surface it.) Sculpin
observes that / friends / * / hasCat adds more nodes to the
selection than / friends / 1 / * , so it picks this generalization
by default. The user can switch which generalization they
want by clicking one of the boxes that appear around nodes
on other axes of generalization.

7As an edge case, filtering a value that is not under a wildcard results in a exclusion
mark on the root node.

(3) The user hits Ctrl-F to "Filter" the selection. This filters
out false values, resulting in exclusions on the wildcard:
/ friends / * / hasCat

-1
.

(4) The user wants to access the names of these cat-having
friends, so, they click one of these names. This invokes
Sculpin’s "parallel navigation" logic. The clicked node is at
the path / friends / 2 / name . When moving to this from the
existing selection / friends / * / hasCat

-1
, Sculpin re-uses as

much of the existing selection as possible, starting from the
root. This results in the selection / friends / * / name

-1
, main-

taining the wildcard filter from before.
(5) Finally, the user drags the selections out to a seam at the

end of the top-level object after "friends". If the drag target
shared structure with the source, it would produce a loop of
drags, but here that doesn’t happen: the target is interpreted
as a single node. The selected items are gathered together
into an array and dropped into the target.

Drag-and-drop. The most versatile action in Sculpin is drag-and-
drop. Figure 9 shows three different behaviors that can be created
with drag-and-drop, depending on the structure of the source and
target. In A , the source and target share a wildcard prefix, but
without any wildcards below this prefix. This results in a loop of
one-to-one drags. In B , the source has a wildcard the target doesn’t.
This results in a many-to-one drag, "extracting" content from the

Sculpin: Direct-Manipulation Transformation of JSON UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea

source structure. In C , the target has a wildcard the source doesn’t.
This results in a one-to-many drag.

The behavior of drag-and-drop extends further than these ba-
sic examples. For instance, steps 3 - 4 of Figure 2 construct a
drag from / * / title to / * / locations / * / before 0 . Since the
two paths share a leading wildcard step, a loop is created: for
each child node in / * , a drag is performed from its / title to
its / locations / * / before 0 , which works as a one-to-many drag
like Figure 9 C .

Designing selections and actions in Sculpin, we have been careful
to make sure that any operation can be looped in any way by
building the right kind of selection. For instance, the "Sort by" action
receives a selection marking keys by which to sort elements of an
array. If the keys are placed under the items of a single array, "Sort
by" will sort that single array, but if they are under multiple arrays,
"Sort by" will sort all these arrays simultaneously. If structural
actions did not allow loops like this, the result ing system would
lack expressivity.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Programming by Demonstration
	2.2 JSON
	2.3 Selections and Selectors

	3 Sculpin in Action
	4 Sculpin
	4.1 Interface
	4.2 Medium
	4.3 Selection
	4.4 Actions
	4.5 Implementation

	5 Further Demonstrations
	5.1 Lightweight App: Image Quilt
	5.2 Document-Backed App: TODO List

	6 Heuristic Evaluation
	7 Limitations
	8 Discussion & Future Work
	8.1 Media beyond JSON
	8.2 Blending Data and Interfaces
	8.3 Bidirectional programming

	9 Conclusion
	Acknowledgments
	References
	A Selection Mechanism

